Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Mastermind-like transcriptional co-activators: emerging roles in regulating cross talk among multiple signaling pathways

Abstract

A family of Mastermind-like (MAML) genes encodes critical transcriptional co-activators for Notch signaling, an evolutionarily conserved pathway with numerous roles in both development and human diseases. Notch receptors are cleaved upon ligand engagement and the intracellular domain of Notch shuttles to the nucleus. MAMLs form a functional DNA-binding complex with the cleaved Notch receptor and the transcription factor CSL, thereby regulating transcriptional events that are specific to the Notch pathway. Here, we review recent studies that have utilized molecular, cellular and physiological model system strategies to reveal the pivotal roles of the MAML proteins in Notch signaling. Unexpectedly, however, emerging evidence implicate MAML proteins as exciting key transcriptional co-activators in other signal transduction pathways including: muscle differentiation and myopathies (MEF2C), tumor suppressor pathway (p53) and colon carcinoma survival (β-catenin). Thus, the MAML family appears to function in transcriptional co-activation in a multitude of cellular processes. It is hypothesized that MAML proteins mediate cross-talk among the various signaling pathways and the diverse activities of the MAML proteins converge to impact normal biological processes and human diseases, including cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Alves-Guerra MC, Ronchini C, Capobianco AJ . (2007). Mastermind-like 1 is a specific coactivator of beta-catenin transcription activation and is essential for colon carcinoma cell survival. Cancer Res 67: 8690–8698.

    Article  CAS  Google Scholar 

  • Anderson LM, Gibbons GH . (2007). Notch: a Mastermind of vascular morphogenesis. J Clin Invest 117: 299–302.

    Article  CAS  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ . (1999). Notch signaling: cell fate control and signal integration in development. Science 284: 770–776.

    Article  CAS  Google Scholar 

  • Aster JC, Pear WS, Blacklow SC . (2008). Notch Signaling in Leukemia. Annu Rev Pathol 3: 587–613.

    Article  CAS  Google Scholar 

  • Bettler D, Pearson S, Yedvobnick B . (1996). The nuclear protein encoded by the Drosophila neurogenic gene Mastermind is widely expressed and associates with specific chromosomal regions. Genetics 143: 859–875.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bray SJ . (2006). Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7: 678–689.

    Article  CAS  Google Scholar 

  • Brennan K, Gardner P . (2002). Notching up another pathway. Bioessays 24: 405–410.

    Article  CAS  Google Scholar 

  • Fortini ME, Artavanis-Tsakonas S . (1994). The suppressor of hairless protein participates in Notch receptor signaling. Cell 79: 273–282.

    Article  CAS  Google Scholar 

  • Fryer CJ, Lamar E, Turbachova I, Kintner C, Jones KA . (2002). Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev 16: 1397–1411.

    Article  CAS  Google Scholar 

  • Fryer CJ, White JB, Jones KA . (2004). Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16: 509–520.

    Article  CAS  Google Scholar 

  • Go MJ, Artavanis-Tsakonas S . (1998). A genetic screen for novel components of the Notch signaling pathway during Drosophila bristle development. Genetics 150: 211–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall JM, McDonnell DP . (2005). Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol Interv 5: 343–357.

    Article  Google Scholar 

  • Han H, Tanigaki K, Yamamoto N, Kuroda K, Yoshimoto M, Nakahata T et al. (2002). Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol 14: 637–645.

    Article  CAS  Google Scholar 

  • Helms W, Lee H, Ammerman M, Parks AL, Muskavitch MA, Yedvobnick B . (1999). Engineered truncations in the Drosophila Mastermind protein disrupt Notch pathway function. Dev Biol 215: 358–374.

    Article  CAS  Google Scholar 

  • High FA, Zhang M, Proweller A, Tu L, Parmacek MS, Pear WS et al. (2007). An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation. J Clin Invest 117: 353–363.

    Article  CAS  Google Scholar 

  • Hozumi K, Negishi N, Suzuki D, Abe N, Sotomaru Y, Tamaoki N et al. (2004). Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nat Immunol 5: 638–644.

    Article  CAS  Google Scholar 

  • Ilagan MX, Kopan R . (2007). SnapShot: Notch signaling pathway. Cell 128: 1246.

    Article  Google Scholar 

  • Jeffries S, Robbins DJ, Capobianco AJ . (2002). Characterization of a high-molecular-weight Notch complex in the nucleus of Notch(ic)-transformed RKE cells and in a human T-cell leukemia cell line. Mol Cell Biol 22: 3927–3941.

    Article  CAS  Google Scholar 

  • Kankel MW, Hurlbut GD, Upadhyay G, Yajnik V, Yedvobnick B, Artavanis-Tsakonas S . (2007). Investigating the genetic circuitry of Mastermind in Drosophila, a Notch signal effector. Genetics 177: 2493–2505.

    Article  CAS  Google Scholar 

  • Katada T, Kinoshita T . (2003). XMam1, the Xenopus homologue of Mastermind, is essential to primary neurogenesis in Xenopus laevis embryos. Int J Dev Biol 47: 397–404.

    CAS  PubMed  Google Scholar 

  • Katada T, Ito M, Kojima Y, Miyatani S, Kinoshita T . (2006). XMam1, Xenopus Mastermind1, induces neural gene expression in a Notch-independent manner. Mech Dev 123: 851–859.

    Article  CAS  Google Scholar 

  • Kitagawa M, Oyama T, Kawashima T, Yedvobnick B, Kumar A, Matsuno K et al. (2001). A human protein with sequence similarity to Drosophila Mastermind coordinates the nuclear form of Notch and a CSL protein to build a transcriptional activator complex on target promoters. Mol Cell Biol 21: 4337–4346.

    Article  CAS  Google Scholar 

  • Kopan R, Nye JS, Weintraub H . (1994). The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 120: 2385–2396.

    CAS  Google Scholar 

  • Kovall RA . (2007). Structures of CSL, Notch and Mastermind proteins: piecing together an active transcription complex. Curr Opin Struct Biol 17: 117–127.

    Article  CAS  Google Scholar 

  • Lai EC . (2002). Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins. EMBO Rep 3: 840–845.

    Article  CAS  Google Scholar 

  • Lasky JL, Wu H . (2005). Notch signaling, brain development, and human disease. Pediatr Res 57: 104R–109R.

    Article  Google Scholar 

  • Li B, Carey M, Workman JL . (2007). The role of chromatin during transcription. Cell 128: 707–719.

    Article  CAS  Google Scholar 

  • Lin SE, Oyama T, Nagase T, Harigaya K, Kitagawa M . (2002). Identification of new human Mastermind proteins defines a family that consists of positive regulators for Notch signaling. J Biol Chem 277: 50612–50620.

    Article  CAS  Google Scholar 

  • Lindsell CE, Shawber CJ, Boulter J, Weinmaster G . (1995). Jagged: a mammalian ligand that activates Notch1. Cell 80: 909–917.

    Article  CAS  Google Scholar 

  • Liu ZJ, Xiao M, Balint K, Smalley KS, Brafford P, Qiu R et al. (2006). Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res 66: 4182–4190.

    Article  CAS  Google Scholar 

  • Luo D, Renault VM, Rando TA . (2005). The regulation of Notch signaling in muscle stem cell activation and postnatal myogenesis. Semin Cell Dev Biol 16: 612–622.

    Article  CAS  Google Scholar 

  • Maillard I, Weng AP, Carpenter AC, Rodriguez CG, Sai H, Xu L et al. (2004). Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 104: 1696–1702.

    Article  CAS  Google Scholar 

  • Nam Y, Sliz P, Song L, Aster JC, Blacklow SC . (2006). Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124: 973–983.

    Article  CAS  Google Scholar 

  • Oyama T, Harigaya K, Muradil A, Hozumi K, Habu S, Oguro H et al. (2007). Mastermind-1 is required for Notch signal-dependent steps in lymphocyte development in vivo. Proc Natl Acad Sci USA 104: 9764–9769.

    Article  CAS  Google Scholar 

  • Petcherski AG, Kimble J . (2000a). LAG-3 is a putative transcriptional activator in the C. elegans Notch pathway. Nature 405: 364–368.

    Article  CAS  Google Scholar 

  • Petcherski AG, Kimble J . (2000b). Mastermind is a putative activator for Notch. Curr Biol 10: R471–R473.

    Article  CAS  Google Scholar 

  • Pires-daSilva A, Sommer RJ . (2003). The evolution of signalling pathways in animal development. Nat Rev Genet 4: 39–49.

    Article  CAS  Google Scholar 

  • Proweller A, Tu L, Lepore JJ, Cheng L, Lu MM, Seykora J et al. (2006). Impaired Notch signaling promotes de novo squamous cell carcinoma formation. Cancer Res 66: 7438–7444.

    Article  CAS  Google Scholar 

  • Proweller A, Wright AC, Horng D, Cheng L, Lu MM, Lepore JJ et al. (2007). Notch signaling in vascular smooth muscle cells is required to pattern the cerebral vasculature. Proc Natl Acad Sci USA 104: 16275–16280.

    Article  CAS  Google Scholar 

  • Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR et al. (1999). Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10: 547–558.

    Article  CAS  Google Scholar 

  • Roy M, Pear WS, Aster JC . (2007). The multifaceted role of Notch in cancer. Curr Opin Genet Dev 17: 52–59.

    Article  CAS  Google Scholar 

  • Saint Just Ribeiro M, Hansson ML, Wallberg AE . (2007). A proline repeat domain in the Notch co-activator MAML1 is important for the p300-mediated acetylation of MAML1. Biochem J 404: 289–298.

    Article  CAS  Google Scholar 

  • Saito T, Chiba S, Ichikawa M, Kunisato A, Asai T, Shimizu K et al. (2003). Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 18: 675–685.

    Article  CAS  Google Scholar 

  • Segditsas S, Tomlinson I . (2006). Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25: 7531–7537.

    Article  CAS  Google Scholar 

  • Shen H, McElhinny AS, Cao Y, Gao P, Liu J, Bronson R et al. (2006). The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis. Genes Dev 20: 675–688.

    Article  CAS  Google Scholar 

  • Smoller D, Friedel C, Schmid A, Bettler D, Lam L, Yedvobnick B . (1990). The Drosophila neurogenic locus Mastermind encodes a nuclear protein unusually rich in amino acid homopolymers. Genes Dev 4: 1688–1700.

    Article  CAS  Google Scholar 

  • Tanigaki K, Han H, Yamamoto N, Tashiro K, Ikegawa M, Kuroda K et al. (2002). Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat Immunol 3: 443–450.

    Article  CAS  Google Scholar 

  • Tu L, Fang TC, Artis D, Shestova O, Pross SE, Maillard I et al. (2005). Notch signaling is an important regulator of type 2 immunity. J Exp Med 202: 1037–1042.

    Article  CAS  Google Scholar 

  • Vousden KH, Lane DP . (2007). p53 in health and disease. Nat Rev Mol Cell Biol 8: 275–283.

    Article  CAS  Google Scholar 

  • Wallberg AE, Pedersen K, Lendahl U, Roeder RG . (2002). p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by Notch intracellular domains in vitro. Mol Cell Biol 22: 7812–7819.

    Article  CAS  Google Scholar 

  • Weng AP, Nam Y, Wolfe MS, Pear WS, Griffin JD, Blacklow SC et al. (2003). Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of Notch signaling. Mol Cell Biol 23: 655–664.

    Article  CAS  Google Scholar 

  • Wilson JJ, Kovall RA . (2006). Crystal structure of the CSL–Notch–Mastermind ternary complex bound to DNA. Cell 124: 985–996.

    Article  CAS  Google Scholar 

  • Wu L, Griffin JD . (2004). Modulation of Notch signaling by Mastermind-like (MAML) transcriptional co-activators and their involvement in tumorigenesis. Semin Cancer Biol 14: 348–356.

    Article  CAS  Google Scholar 

  • Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD . (2000). MAML1, a human homologue of Drosophila Mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet 26: 484–489.

    Article  CAS  Google Scholar 

  • Wu L, Kobayashi K, Sun T, Gao P, Liu J, Nakamura M et al. (2004). Cloning and functional characterization of the murine Mastermind-like 1 (Maml1) gene. Gene 328: 153–165.

    Article  CAS  Google Scholar 

  • Wu L, Maillard I, Nakamura M, Pear WS, Griffin JD . (2007). The transcriptional coactivator Maml1 is required for Notch2-mediated marginal zone B-cell development. Blood 110: 3618–3623.

    Article  CAS  Google Scholar 

  • Wu L, Sun T, Kobayashi K, Gao P, Griffin JD . (2002). Identification of a family of Mastermind-like transcriptional coactivators for mammalian Notch receptors. Mol Cell Biol 22: 7688–7700.

    Article  CAS  Google Scholar 

  • Xu T, Artavanis-Tsakonas S . (1990). Deltex, a locus interacting with the neurogenic genes, Notch, Delta and Mastermind in Drosophila melanogaster. Genetics 126: 665–677.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu T, Rebay I, Fleming RJ, Scottgale TN, Artavanis-Tsakonas S . (1990). The Notch locus and the genetic circuitry involved in early Drosophila neurogenesis. Genes Dev 4: 464–475.

    Article  CAS  Google Scholar 

  • Yedvobnick B, Smoller D, Young P, Mills D . (1988). Molecular analysis of the neurogenic locus Mastermind of Drosophila melanogaster. Genetics 118: 483–497.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S, Reddy JK . (2007). Transcription coactivators for peroxisome proliferator-activated receptors. Biochim Biophys Acta 1771: 936–951.

    Article  CAS  Google Scholar 

  • Zhao Y, Katzman RB, Delmolino LM, Bhat I, Zhang Y, Gurumurthy CB et al. (2007). The Notch regulator MAML1 interacts with p53 and functions as a coactivator. J Biol Chem 282: 11969–11981.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH (R01 CA097148) and Muscular Dystrophy Association (MDA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McElhinny, A., Li, JL. & Wu, L. Mastermind-like transcriptional co-activators: emerging roles in regulating cross talk among multiple signaling pathways. Oncogene 27, 5138–5147 (2008). https://doi.org/10.1038/onc.2008.228

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.228

Keywords

This article is cited by

Search

Quick links