Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

It's T-ALL about Notch

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive subset of ALL with poor clinical outcome compared to B-ALL. Therefore, to improve treatment, it is imperative to delineate the molecular blueprint of this disease. This review describes the central role that the Notch pathway plays in T-ALL development. We also discuss the interactions between Notch and the tumor suppressors Ikaros and p53. Loss of Ikaros, a direct repressor of Notch target genes, and suppression of p53-mediated apoptosis are essential for development of this neoplasm. In addition to the activating mutations of Notch previously described, this review will outline combinations of mutations in pathways that contribute to Notch signaling and appear to drive T-ALL development by ‘mimicking’ Notch effects on cell cycle and apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aifantis I, Raetz E, Buonamici S . (2008). Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 8: 380–390.

    Article  CAS  PubMed  Google Scholar 

  • Amati B, Alevizopoulos K, Vlach J . (1998). Myc and the cell cycle. Front Biosci 3: d250–d268.

    Article  CAS  PubMed  Google Scholar 

  • Barata JT, Cardoso AA, Nadler LM, Boussiotis VA . (2001). Interleukin-7 promotes survival and cell cycle progression of T-cell acute lymphoblastic leukemia cells by down-regulating the cyclin-dependent kinase inhibitor p27(kip1). Blood 98: 1524–1531.

    CAS  PubMed  Google Scholar 

  • Bellavia D, Mecarozzi M, Campese AF, Grazioli P, Gulino A, Screpanti I . (2007a). Notch and Ikaros: not only converging players in T cell leukemia. Cell Cycle 6: 2730–2734.

    CAS  PubMed  Google Scholar 

  • Bellavia D, Mecarozzi M, Campese AF, Grazioli P, Talora C, Frati L et al. (2007b). Notch3 and the Notch3-upregulated RNA-binding protein HuD regulate Ikaros alternative splicing. EMBO J 26: 1670–1680.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beverly LJ, Capobianco AJ . (2003). Perturbation of Ikaros isoform selection by MLV integration is a cooperative event in Notch(IC)-induced T cell leukemogenesis. Cancer Cell 3: 551–564.

    CAS  PubMed  Google Scholar 

  • Beverly LJ, Capobianco AJ . (2004). Targeting promiscuous signaling pathways in cancer: another Notch in the bedpost. Trends Mol Med 10: 591–598.

    CAS  PubMed  Google Scholar 

  • Beverly LJ, Felsher DW, Capobianco AJ . (2005). Suppression of p53 by Notch in lymphomagenesis: implications for initiation and regression. Cancer Res 65: 7159–7168.

    CAS  PubMed  Google Scholar 

  • Blain SW, Montalvo E, Massague J . (1997). Differential interaction of the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 with cyclin A-Cdk2 and cyclin D2-Cdk4. J Biol Chem 272: 25863–25872.

    CAS  PubMed  Google Scholar 

  • Brooks CL, Gu W . (2006). p53 ubiquitination: Mdm2 and beyond. Mol Cell 21: 307–315.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR et al. (2000). A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell 5: 207–216.

    CAS  PubMed  Google Scholar 

  • Dang CV, Resar LM, Emison E, Kim S, Li Q, Prescott JE et al. (1999). Function of the c-Myc oncogenic transcription factor. Exp Cell Res 253: 63–77.

    CAS  PubMed  Google Scholar 

  • Dohda T, Maljukova A, Liu L, Heyman M, Grander D, Brodin D et al. (2007). Notch signaling induces SKP2 expression and promotes reduction of p27Kip1 in T-cell acute lymphoblastic leukemia cell lines. Exp Cell Res 313: 3141–3152.

    CAS  PubMed  Google Scholar 

  • Dou S, Zeng X, Cortes P, Erdjument-Bromage H, Tempst P, Honjo T et al. (1994). The recombination signal sequence-binding protein RBP-2N functions as a transcriptional repressor. Mol Cell Biol 14: 3310–3319.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dumortier A, Jeannet R, Kirstetter P, Kleinmann E, Sellars M, dos Santos NR et al. (2006). Notch activation is an early and critical event during T-cell leukemogenesis in Ikaros-deficient mice. Mol Cell Biol 26: 209–220.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL . (1999). Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13: 2658–2669.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. (1991). TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66: 649–661.

    CAS  PubMed  Google Scholar 

  • Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. (2002). Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1: 75–87.

    CAS  PubMed  Google Scholar 

  • Fortini ME, Artavanis-Tsakonas S . (1994). The suppressor of hairless protein participates in notch receptor signaling. Cell 79: 273–282.

    CAS  PubMed  Google Scholar 

  • Fryer CJ, Lamar E, Turbachova I, Kintner C, Jones KA . (2002). Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev 16: 1397–1411.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fryer CJ, White JB, Jones KA . (2004). Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16: 509–520.

    CAS  PubMed  Google Scholar 

  • Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P, Winandy S et al. (1994). The Ikaros gene is required for the development of all lymphoid lineages. Cell 79: 143–156.

    CAS  PubMed  Google Scholar 

  • Georgopoulos K, Moore DD, Derfler B . (1992). Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 258: 808–812.

    CAS  PubMed  Google Scholar 

  • Girard L, Hanna Z, Beaulieu N, Hoemann CD, Simard C, Kozak CA et al. (1996). Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes Dev 10: 1930–1944.

    CAS  PubMed  Google Scholar 

  • Goldberg JM, Silverman LB, Levy DE, Dalton VK, Gelber RD, Lehmann L et al. (2003). Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. J Clin Oncol 21: 3616–3622.

    PubMed  Google Scholar 

  • Gordon WR, Vardar-Ulu D, Histen G, Sanchez-Irizarry C, Aster JC, Blacklow SC . (2007). Structural basis for autoinhibition of Notch. Nat Struct Mol Biol 14: 295–300.

    CAS  PubMed  Google Scholar 

  • Grabher C, von Boehmer H, Look AT . (2006). Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 6: 347–359.

    CAS  PubMed  Google Scholar 

  • Guo W, Lasky JL, Chang CJ, Mosessian S, Lewis X, Xiao Y et al. (2008). Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 453: 529–533.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta-Rossi N, Le Bail O, Gonen H, Brou C, Logeat F, Six E et al. (2001). Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J Biol Chem 276: 34371–34378.

    CAS  PubMed  Google Scholar 

  • Hahm K, Ernst P, Lo K, Kim GS, Turck C, Smale ST . (1994). The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol Cell Biol 14: 7111–7123.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hermeking H, Eick D . (1994). Mediation of c-Myc-induced apoptosis by p53. Science 265: 2091–2093.

    CAS  PubMed  Google Scholar 

  • Hsieh JJ, Henkel T, Salmon P, Robey E, Peterson MG, Hayward SD . (1996). Truncated mammalian Notch1 activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2. Mol Cell Biol 16: 952–959.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeffries S, Robbins DJ, Capobianco AJ . (2002). Characterization of a high-molecular-weight Notch complex in the nucleus of Notch(ic)-transformed RKE cells and in a human T-cell leukemia cell line. Mol Cell Biol 22: 3927–3941.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kathrein KL, Chari S, Winandy S . (2008). Ikaros directly represses the notch target gene Hes1 in a leukemia T cell line: implications for CD4 regulation. J Biol Chem 283: 10476–10484.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koch U, Radtke F . (2007). Notch and cancer: a double-edged sword. Cell Mol Life Sci 64: 2746–2762.

    CAS  PubMed  Google Scholar 

  • Levine AJ, Hu W, Feng Z . (2006). The P53 pathway: what questions remain to be explored? Cell Death Differ 13: 1027–1036.

    CAS  PubMed  Google Scholar 

  • Lopez-Nieva P, Santos J, Fernandez-Piqueras J . (2004). Defective expression of Notch1 and Notch2 in connection to alterations of c-Myc and Ikaros in gamma-radiation-induced mouse thymic lymphomas. Carcinogenesis 25: 1299–1304.

    CAS  PubMed  Google Scholar 

  • Malecki MJ, Sanchez-Irizarry C, Mitchell JL, Histen G, Xu ML, Aster JC et al. (2006). Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol Cell Biol 26: 4642–4651.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marcu KB, Bossone SA, Patel AJ . (1992). myc function and regulation. Annu Rev Biochem 61: 809–860.

    CAS  PubMed  Google Scholar 

  • Matsuoka S, Oike Y, Onoyama I, Iwama A, Arai F, Takubo K et al. (2008). Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev 22: 986–991.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayo LD, Dixon JE, Durden DL, Tonks NK, Donner DB . (2002). PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J Biol Chem 277: 5484–5489.

    CAS  PubMed  Google Scholar 

  • Meek DW, Knippschild U . (2003). Posttranslational modification of MDM2. Mol Cancer Res 1: 1017–1026.

    CAS  PubMed  Google Scholar 

  • Molnar A, Georgopoulos K . (1994). The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol 14: 8292–8303.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mumm JS, Kopan R . (2000). Notch signaling: from the outside in. Dev Biol 228: 151–165.

    Article  CAS  PubMed  Google Scholar 

  • Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X, Pan DJ et al. (2000). A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell 5: 197–206.

    CAS  PubMed  Google Scholar 

  • Murata K, Hattori M, Hirai N, Shinozuka Y, Hirata H, Kageyama R et al. (2005). Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Mol Cell Biol 25: 4262–4271.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen BC, Lefort K, Mandinova A, Antonini D, Devgan V, Della Gatta G et al. (2006). Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev 20: 1028–1042.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M et al. (2003). Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 33: 416–421.

    CAS  PubMed  Google Scholar 

  • O'Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C et al. (2007). FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 204: 1813–1824.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oberg C, Li J, Pauley A, Wolf E, Gurney M, Lendahl U . (2001). The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J Biol Chem 276: 35847–35853.

    CAS  PubMed  Google Scholar 

  • Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M et al. (2007). Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 13: 1203–1210.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pui CH, Sandlund JT, Pei D, Campana D, Rivera GK, Ribeiro RC et al. (2004). Improved outcome for children with acute lymphoblastic leukemia: results of Total Therapy Study XIIIB at St Jude Children's Research Hospital. Blood 104: 2690–2696.

    CAS  PubMed  Google Scholar 

  • Qi R, An H, Yu Y, Zhang M, Liu S, Xu H et al. (2003). Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res 63: 8323–8329.

    CAS  PubMed  Google Scholar 

  • Rebay I, Fleming RJ, Fehon RG, Cherbas L, Cherbas P, Artavanis-Tsakonas S . (1991). Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell 67: 687–699.

    CAS  PubMed  Google Scholar 

  • Ronchini C, Capobianco AJ . (2000). Notch(ic)-ER chimeras display hormone-dependent transformation, nuclear accumulation, phosphorylation and CBF1 activation. Oncogene 19: 3914–3924.

    CAS  PubMed  Google Scholar 

  • Roy M, Pear WS, Aster JC . (2007). The multifaceted role of Notch in cancer. Curr Opin Genet Dev 17: 52–59.

    CAS  PubMed  Google Scholar 

  • Sanchez-Irizarry C, Carpenter AC, Weng AP, Pear WS, Aster JC, Blacklow SC . (2004). Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Mol Cell Biol 24: 9265–9273.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Satoh Y, Matsumura I, Tanaka H, Ezoe S, Sugahara H, Mizuki M et al. (2004). Roles for c-Myc in self-renewal of hematopoietic stem cells. J Biol Chem 279: 24986–24993.

    CAS  PubMed  Google Scholar 

  • Schroeter EH, Kisslinger JA, Kopan R . (1998). Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393: 382–386.

    CAS  PubMed  Google Scholar 

  • Sharma VM, Calvo JA, Draheim KM, Cunningham LA, Hermance N, Beverly L et al. (2006). Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. Mol Cell Biol 26: 8022–8031.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE . (1997). Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev 11: 1464–1478.

    CAS  PubMed  Google Scholar 

  • Sherr CJ . (1998). Tumor surveillance via the ARF-p53 pathway. Genes Dev 12: 2984–2991.

    CAS  PubMed  Google Scholar 

  • Sherr CJ . (2006). Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6: 663–673.

    CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM . (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512.

    CAS  PubMed  Google Scholar 

  • Sicinska E, Aifantis I, Le Cam L, Swat W, Borowski C, Yu Q et al. (2003). Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4: 451–461.

    CAS  PubMed  Google Scholar 

  • Sriuranpong V, Borges MW, Ravi RK, Arnold DR, Nelkin BD, Baylin SB et al. (2001). Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res 61: 3200–3205.

    CAS  PubMed  Google Scholar 

  • Stahl M, Ge C, Shi S, Pestell RG, Stanley P . (2006). Notch1-induced transformation of RKE-1 cells requires up-regulation of cyclin D1. Cancer Res 66: 7562–7570.

    CAS  PubMed  Google Scholar 

  • Struhl G, Adachi A . (1998). Nuclear access and action of notch in vivo. Cell 93: 649–660.

    CAS  PubMed  Google Scholar 

  • Sun L, Crotty ML, Sensel M, Sather H, Navara C, Nachman J et al. (1999a). Expression of dominant-negative Ikaros isoforms in T-cell acute lymphoblastic leukemia. Clin Cancer Res 5: 2112–2120.

    CAS  PubMed  Google Scholar 

  • Sun L, Goodman PA, Wood CM, Crotty ML, Sensel M, Sather H et al. (1999b). Expression of aberrantly spliced oncogenic ikaros isoforms in childhood acute lymphoblastic leukemia. J Clin Oncol 17: 3753–3766.

    CAS  PubMed  Google Scholar 

  • Sun L, Heerema N, Crotty L, Wu X, Navara C, Vassilev A et al. (1999c). Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci USA 96: 680–685.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun L, Liu A, Georgopoulos K . (1996). Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J 15: 5358–5369.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki A, de la Pompa JL, Stambolic V, Elia AJ, Sasaki T, del Barco Barrantes I et al. (1998). High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol 8: 1169–1178.

    CAS  PubMed  Google Scholar 

  • Tamura K, Taniguchi Y, Minoguchi S, Sakai T, Tun T, Furukawa T et al. (1995). Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J kappa/Su(H). Curr Biol 5: 1416–1423.

    CAS  PubMed  Google Scholar 

  • Thiel E, Kranz BR, Raghavachar A, Bartram CR, Loffler H, Messerer D et al. (1989). Prethymic phenotype and genotype of pre-T (CD7+/ER−)-cell leukemia and its clinical significance within adult acute lymphoblastic leukemia. Blood 73: 1247–1258.

    CAS  PubMed  Google Scholar 

  • Thompson BJ, Jankovic V, Gao J, Buonamici S, Vest A, Lee JM et al. (2008). Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J Exp Med 205: 1395–1408.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsukiyama T, Ishida N, Shirane M, Minamishima YA, Hatakeyama S, Kitagawa M et al. (2001). Down-regulation of p27Kip1 expression is required for development and function of T cells. J Immunol 166: 304–312.

    CAS  PubMed  Google Scholar 

  • Uren AG, Kool J, Matentzoglu K, de Ridder J, Mattison J, van Uitert M et al. (2008). Large-scale mutagenesis in p19(ARF)- and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 133: 727–741.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waltzer L, Bourillot PY, Sergeant A, Manet E . (1995). RBP-J kappa repression activity is mediated by a co-repressor and antagonized by the Epstein–Barr virus transcription factor EBNA2. Nucleic Acids Res 23: 4939–4945.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Welcker M, Clurman BE . (2008). FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8: 83–93.

    CAS  PubMed  Google Scholar 

  • Weng AP, Ferrando AA, Lee W, Morris IV JP, Silverman LB, Sanchez-Irizarry C et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306: 269–271.

    CAS  PubMed  Google Scholar 

  • Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C et al. (2006). c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 20: 2096–2109.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winandy S, Wu P, Georgopoulos K . (1995). A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 83: 289–299.

    CAS  PubMed  Google Scholar 

  • Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD . (2000). MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet 26: 484–489.

    CAS  PubMed  Google Scholar 

  • Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC . (2001). HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3: 973–982.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Capobianco Laboratory for their support and critical reading of the manuscript. This work was funded by NIH Grant R01 (AJ Capobianco). RM Demarest was funded by training program in Basic Cancer Research from Wistar Institute (T32 CA09171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A J Capobianco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demarest, R., Ratti, F. & Capobianco, A. It's T-ALL about Notch. Oncogene 27, 5082–5091 (2008). https://doi.org/10.1038/onc.2008.222

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.222

Keywords

This article is cited by

Search

Quick links