Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Review: genetic models of acute myeloid leukaemia

Abstract

The use of genetically engineered mice (GEM) have been critical in understanding disease states such as cancer, and none more so than acute myelogenous leukaemia (AML), a disease characterized by over 100 distinct chromosomal translocations. A substantial proportion of cases exhibiting recurrent reciprocal translocations at diagnosis, such as t(8;21) or t(15;17) have been exhaustively studied and are currently employed in clinical diagnosis. However, a definitive conclusion regarding the leukaemogenic potential of defined transgenes for this disease remains elusive. While it is increasingly apparent that a number of cooperating mutations are necessary to develop a leukaemic phenotype, the number of models reflecting these synergisms remains few. Furthermore, little emphasis has been paid to the effect of chromosomal translocations other than recurrent genetic abnormalities, with no models reflecting the multiple abnormalities observed in high-risk cases of AML accounting for 8–10% of adult AML. Here we review the differing technologies employed in generation of GEM of AML. We discuss the relevance of GEM AML from embryonic stem cell-mediated (for example retinoic acid receptor-α fusions and AML1/ETO) models; through to the valuable retroviral-mediated gene transfer models. The latter have been used to great effect in defining the transforming properties of chromosomal translocation products such as MLL (found in 5–6% of all AML cases) and NUP98 (denoting poor prognosis in therapy-related disease) and particularly when co-transduced with bad prognostic factors such as Flt3 mutations. Finally, we comment on the emergence of newer transduction technologies, which can regulate the level of expression to defined cell lineages in both primary murine and human xenografts, and discuss how combining multiple genetic modalities, more relevant models of this complex disease are being generated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L et al. (2002). Of mice and models: improved animal models for biomedical research. Physiol Genomics 11: 115–132.

    CAS  PubMed  Google Scholar 

  • Brinster RL, Chen HY, Trumbauer ME, Yagle MK, Palmiter RD . (1985). Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci USA 82: 4438–4442.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown D, Kogan S, Lagasse E, Weissman I, Alcalay M, Pelicci PG et al. (1997). A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA 94: 2551–2556.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruserud O, Hovland R, Wergeland L, Huang TS, Gjertsen BT . (2003). Flt3-mediated signaling in human acute myelogenous leukemia (AML) blasts: a functional characterization of Flt3-ligand effects in AML cell populations with and without genetic Flt3 abnormalities. Haematologica 88: 416–428.

    CAS  PubMed  Google Scholar 

  • Buchholz F, Refaeli Y, Trumpp A, Bishop JM . (2000). Inducible chromosomal translocation of AML1 and ETO genes through Cre/loxP-mediated recombination in the mouse. EMBO Rep 1: 133–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R et al. (2004). Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 350: 1605–1616.

    Article  CAS  PubMed  Google Scholar 

  • Castilla LH, Garrett L, Adya N, Orlic D, Dutra A, Anderson S et al. (1999). The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet 23: 144–146.

    CAS  PubMed  Google Scholar 

  • Castilla LH, Wijmenga C, Wang Q, Stacy T, Speck NA, Eckhaus M et al. (1996). Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11. Cell 87: 687–696.

    CAS  PubMed  Google Scholar 

  • Chan IT, Gilliland DG . (2004). Oncogenic K-ras in mouse models of myeloproliferative disease and acute myeloid leukemia. Cell Cycle 3: 536–537.

    CAS  PubMed  Google Scholar 

  • Chan IT, Kutok JL, Williams IR, Cohen S, Moore S, Shigematsu H et al. (2006). Oncogenic K-ras cooperates with PML-RAR alpha to induce an acute promyelocytic leukemia-like disease. Blood 108: 1708–1715.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng GX, Zhu XH, Men XQ, Wang L, Huang QH, Jin XL et al. (1999). Distinct leukemia phenotypes in transgenic mice and different corepressor interactions generated by promyelocytic leukemia variant fusion genes PLZF-RARalpha and NPM-RARalpha. Proc Natl Acad Sci USA 96: 6318–6323.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christianson SW, Greiner DL, Hesselton RA, Leif JH, Wagar EJ, Schweitzer IB et al. (1997). Enhanced human CD4+ T cell engraftment in beta2-microglobulin-deficient NOD-scid mice. J Immunol 158: 3578–3586.

    CAS  PubMed  Google Scholar 

  • Collins EC, Pannell R, Simpson EM, Forster A, Rabbitts TH . (2000). Inter-chromosomal recombination of Mll and Af9 genes mediated by cre-loxP in mouse development. EMBO Rep 1: 127–132.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL . (2003). Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 17: 3029–3035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuenco GM, Nucifora G, Ren R . (2000). Human AML1/MDS1/EVI1 fusion protein induces an acute myelogenous leukemia (AML) in mice: a model for human AML. Proc Natl Acad Sci USA 97: 1760–1765.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuenco GM, Ren R . (2001). Cooperation of BCR-ABL and AML1/MDS1/EVI1 in blocking myeloid differentiation and rapid induction of an acute myelogenous leukemia. Oncogene 20: 8236–8248.

    CAS  PubMed  Google Scholar 

  • Dash AB, Williams IR, Kutok JL, Tomasson MH, Anastasiadou E, Lindahl K et al. (2002). A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proc Natl Acad Sci USA 99: 7622–7627.

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Guzman CG, Johnson A, Klug CA . (2003). The ETO domain is necessary for the developmental abnormalities associated with AML1-ETO expression in the hematopoietic stem cell compartment in vivo. Blood Cells Mol Dis 30: 201–206.

    CAS  PubMed  Google Scholar 

  • de Guzman CG, Warren AJ, Zhang Z, Gartland L, Erickson P, Drabkin H et al. (2002). Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol 22: 5506–5517.

    CAS  PubMed  PubMed Central  Google Scholar 

  • DiMartino JF, Ayton PM, Chen EH, Naftzger CC, Young BD, Cleary ML . (2002). The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL-AF10. Blood 99: 3780–3785.

    CAS  PubMed  Google Scholar 

  • Dobson CL, Warren AJ, Pannell R, Forster A, Lavenir I, Corral J et al. (1999). The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J 18: 3564–3574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson CL, Warren AJ, Pannell R, Forster A, Rabbitts TH . (2000). Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. EMBO J 19: 843–851.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R . (1985). The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87: 27–45.

    CAS  PubMed  Google Scholar 

  • Early E, Moore MA, Kakizuka A, Nason-Burchenal K, Martin P, Evans RM et al. (1996). Transgenic expression of PML/RARalpha impairs myelopoiesis. Proc Natl Acad Sci USA 93: 7900–7904.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fenske TS, Pengue G, Mathews V, Hanson PT, Hamm SE, Riaz N et al. (2004). Stem cell expression of the AML1/ETO fusion protein induces a myeloproliferative disorder in mice. Proc Natl Acad Sci USA 101: 15184–15189.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gabriele L, Phung J, Fukumoto J, Segal D, Wang IM, Giannakakou P et al. (1999). Regulation of apoptosis in myeloid cells by interferon consensus sequence-binding protein. J Exp Med 190: 411–421.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon JW, Ruddle FH . (1983). Gene transfer into mouse embryos: production of transgenic mice by pronuclear injection. Methods Enzymol 101: 411–433.

    CAS  PubMed  Google Scholar 

  • Gossen M, Bujard H . (1992). Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89: 5547–5551.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H . (1995). Transcriptional activation by tetracyclines in mammalian cells. Science 268: 1766–1769.

    CAS  PubMed  Google Scholar 

  • Gossler A, Doetschman T, Korn R, Serfling E, Kemler R . (1986). Transgenesis by means of blastocyst-derived embryonic stem cell lines. Proc Natl Acad Sci USA 83: 9065–9069.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, The Medical Research Council Adult and Children's Leukaemia Working Parties et al. (1998). The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. Blood 92: 2322–2333.

    CAS  PubMed  Google Scholar 

  • Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K et al. (2005). Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437: 147–153.

    CAS  PubMed  Google Scholar 

  • Grisolano JL, O'Neal J, Cain J, Tomasson MH . (2003). An activated receptor tyrosine kinase, TEL/PDGFbetaR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA 100: 9506–9511.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grisolano JL, Sclar GM, Ley TJ . (1994). Early myeloid cell-specific expression of the human cathepsin G gene in transgenic mice. Proc Natl Acad Sci USA 91: 8989–8993.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ . (1997). Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood 89: 376–387.

    CAS  PubMed  Google Scholar 

  • Guillemin MC, Raffoux E, Vitoux D, Kogan S, Soilihi H, Lallemand-Breitenbach V et al. (2002). In vivo activation of cAMP signaling induces growth arrest and differentiation in acute promyelocytic leukemia. J Exp Med 196: 1373–1380.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gurevich RM, Aplan PD, Humphries RK . (2004). NUP98-topoisomerase I acute myeloid leukemia-associated fusion gene has potent leukemogenic activities independent of an engineered catalytic site mutation. Blood 104: 1127–1136.

    CAS  PubMed  Google Scholar 

  • Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J et al. (2000). The World Health Organization classification of neoplasms of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting—Airlie House, Virginia, November, 1997. Hematol J 1: 53–66.

    CAS  PubMed  Google Scholar 

  • He LZ, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A et al. (1998). Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet 18: 126–135.

    CAS  PubMed  Google Scholar 

  • He LZ, Merghoub T, Pandolfi PP . (1999). In vivo analysis of the molecular pathogenesis of acute promyelocytic leukemia in the mouse and its therapeutic implications. Oncogene 18: 5278–5292.

    CAS  PubMed  Google Scholar 

  • He LZ, Tribioli C, Rivi R, Peruzzi D, Pelicci PG, Soares V et al. (1997). Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc Natl Acad Sci USA 94: 5302–5307.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi M, O'Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR . (2002). Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 1: 63–74.

    CAS  PubMed  Google Scholar 

  • Holtschke T, Lohler J, Kanno Y, Fehr T, Giese N, Rosenbauer F et al. (1996). Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87: 307–317.

    CAS  PubMed  Google Scholar 

  • Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G et al. (2005). Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood 106: 1565–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenisch R . (1980). Retroviruses and embryogenesis: microinjection of Moloney leukemia virus into midgestation mouse embryos. Cell 19: 181–188.

    CAS  PubMed  Google Scholar 

  • Jaenisch R, Jahner D, Nobis P, Simon I, Lohler J, Harbers K et al. (1981). Chromosomal position and activation of retroviral genomes inserted into the germ line of mice. Cell 24: 519–529.

    CAS  PubMed  Google Scholar 

  • Jaisser F . (2000). Inducible gene expression and gene modification in transgenic mice. J Am Soc Nephrol 11 (Suppl 16): S95–S100.

    CAS  PubMed  Google Scholar 

  • Kawagoe H, Grosveld GC . (2005). MN1-TEL myeloid oncoprotein expressed in multipotent progenitors perturbs both myeloid and lymphoid growth and causes T-lymphoid tumors in mice. Blood 106: 4278–4286.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly LM, Kutok JL, Williams IR, Boulton CL, Amaral SM, Curley DP et al. (2002). PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA 99: 8283–8288.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kogan SC, Brown DE, Shultz DB, Truong BT, Lallemand-Breitenbach V, Guillemin MC et al. (2001). BCL-2 cooperates with promyelocytic leukemia retinoic acid receptor alpha chimeric protein (PMLRARalpha) to block neutrophil differentiation and initiate acute leukemia. J Exp Med 193: 531–543.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. (2001). The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 98: 1752–1759.

    CAS  PubMed  Google Scholar 

  • Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G . (1998). Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J 17: 3714–3725.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kroon E, Thorsteinsdottir U, Mayotte N, Nakamura T, Sauvageau G . (2001). NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice. EMBO J 20: 350–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kundu M, Chen A, Anderson S, Kirby M, Xu L, Castilla LH et al. (2002). Role of Cbfb in hematopoiesis and perturbations resulting from expression of the leukemogenic fusion gene Cbfb-MYH11. Blood 100: 2449–2456.

    CAS  PubMed  Google Scholar 

  • Lavau C, Du C, Thirman M, Zeleznik-Le N . (2000a). Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J 19: 4655–4664.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lavau C, Luo RT, Du C, Thirman MJ . (2000b). Retrovirus-mediated gene transfer of MLL-ELL transforms primary myeloid progenitors and causes acute myeloid leukemias in mice. Proc Natl Acad Sci USA 97: 10984–10989.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lavau C, Szilvassy SJ, Slany R, Cleary ML . (1997). Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J 16: 4226–4237.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Williams IR, Anastasiadou E, Boulton CL, Joseph SW, Amaral SM et al. (2005). FLT3 internal tandem duplication mutations induce myeloproliferative or lymphoid disease in a transgenic mouse model. Oncogene 24: 7882–7892.

    CAS  PubMed  Google Scholar 

  • Lessard J, Sauvageau G . (2003). Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423: 255–260.

    CAS  PubMed  Google Scholar 

  • Liao C, Wang XY, Wei HQ, Li SQ, Merghoub T, Pandolfi PP et al. (2001). Altered myelopoiesis and the development of acute myeloid leukemia in transgenic mice overexpressing cyclin A1. Proc Natl Acad Sci USA 98: 6853–6858.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marcucci G, Maharry K, Whitman SP, Vukosavljevic T, Paschka P, Langer C et al. (2007). High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B Study. J Clin Oncol 25: 3337–3343.

    CAS  PubMed  Google Scholar 

  • McCormack E, Bruserud O, Gjertsen BT . (2005). Animal models of acute myelogenous leukaemia—development, application and future perspectives. Leukemia 19: 687–706.

    CAS  PubMed  Google Scholar 

  • McCormack E, Micklem DR, Pindard LE, Silden E, Gallant P, Belenkov A et al. (2007). In vivo optical imaging of acute myeloid leukemia by green fluorescent protein: time-domain autofluorescence decoupling, fluorophore quantification, and localization. Mol Imaging 6: 193–204.

    CAS  PubMed  Google Scholar 

  • Minucci S, Monestiroli S, Giavara S, Ronzoni S, Marchesi F, Insinga A et al. (2002). PML-RAR induces promyelocytic leukemias with high efficiency following retroviral gene transfer into purified murine hematopoietic progenitors. Blood 100: 2989–2995.

    CAS  PubMed  Google Scholar 

  • Mrozek K, Heerema NA, Bloomfield CD . (2004). Cytogenetics in acute leukemia. Blood Rev 18: 115–136.

    PubMed  Google Scholar 

  • Mrozek K, Heinonen K, Bloomfield CD . (2001). Clinical importance of cytogenetics in acute myeloid leukaemia. Best Pract Res Clin Haematol 14: 19–47.

    CAS  PubMed  Google Scholar 

  • Mueller BU, Pabst T, Fos J, Petkovic V, Fey MF, Asou N et al. (2006). ATRA resolves the differentiation block in t(15;17) acute myeloid leukemia by restoring PU.1 expression. Blood 107: 3330–3338.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller U . (1999). Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech Dev 82: 3–21.

    CAS  PubMed  Google Scholar 

  • Mulloy JC, Cammenga J, Berguido FJ, Wu K, Zhou P, Comenzo RL et al. (2003). Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood 102: 4369–4376.

    CAS  PubMed  Google Scholar 

  • Okuda T, Cai Z, Yang S, Lenny N, Lyu CJ, van Deursen JM et al. (1998). Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 91: 3134–3143.

    CAS  PubMed  Google Scholar 

  • Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR . (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330.

    CAS  PubMed  Google Scholar 

  • Ono R, Nakajima H, Ozaki K, Kumagai H, Kawashima T, Taki T et al. (2005). Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple-lineage leukemogenesis. J Clin Invest 115: 919–929.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmiter RD, Brinster RL . (1986). Germ-line transformation of mice. Annu Rev Genet 20: 465–499.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423: 302–305.

    CAS  PubMed  Google Scholar 

  • Pineault N, Buske C, Feuring-Buske M, Abramovich C, Rosten P, Hogge DE et al. (2003). Induction of acute myeloid leukemia in mice by the human leukemia-specific fusion gene NUP98-HOXD13 in concert with Meis1. Blood 101: 4529–4538.

    CAS  PubMed  Google Scholar 

  • Rawat VP, Cusan M, Deshpande A, Hiddemann W, Quintanilla-Martinez L, Humphries RK et al. (2004). Ectopic expression of the homeobox gene Cdx2 is the transforming event in a mouse model of t(12;13)(p13;q12) acute myeloid leukemia. Proc Natl Acad Sci USA 101: 817–822.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoades KL, Hetherington CJ, Harakawa N, Yergeau DA, Zhou L, Liu LQ et al. (2000). Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood 96: 2108–2115.

    CAS  PubMed  Google Scholar 

  • Robertson E, Bradley A, Kuehn M, Evans M . (1986). Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323: 445–448.

    CAS  PubMed  Google Scholar 

  • Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y et al. (2004). Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 36: 624–630.

    CAS  PubMed  Google Scholar 

  • Ryding AD, Sharp MG, Mullins JJ . (2001). Conditional transgenic technologies. J Endocrinol 171: 1–14.

    CAS  PubMed  Google Scholar 

  • Sanz MA, Tallman MS, Lo-Coco F . (2005). Practice points, consensus, and controversial issues in the management of patients with newly diagnosed acute promyelocytic leukemia. Oncologist 10: 806–814.

    PubMed  Google Scholar 

  • Scheller M, Foerster J, Heyworth CM, Waring JF, Lohler J, Gilmore GL et al. (1999). Altered development and cytokine responses of myeloid progenitors in the absence of transcription factor, interferon consensus sequence binding protein. Blood 94: 3764–3771.

    CAS  PubMed  Google Scholar 

  • Schwieger M, Lohler J, Friel J, Scheller M, Horak I, Stocking C . (2002). AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J Exp Med 196: 1227–1240.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar DB, Cheng JC, Sakamoto KM . (2005). Role of cyclic AMP response element binding protein in human leukemias. Cancer 104: 1819–1824.

    CAS  PubMed  Google Scholar 

  • Shen SW, Dolnikov A, Passioura T, Millington M, Wotherspoon S, Rice A et al. (2004). Mutant N-ras preferentially drives human CD34+ hematopoietic progenitor cells into myeloid differentiation and proliferation both in vitro and in the NOD/SCID mouse. Exp Hematol 32: 852–860.

    CAS  PubMed  Google Scholar 

  • Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK et al. (2005). In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435: 969–973.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS . (1985). Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317: 230–234.

    CAS  PubMed  Google Scholar 

  • So CW, Cleary ML . (2002). MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function. Mol Cell Biol 22: 6542–6552.

    CAS  PubMed  PubMed Central  Google Scholar 

  • So CW, Karsunky H, Wong P, Weissman IL, Cleary ML . (2004). Leukemic transformation of hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. Blood 103: 3192–3199.

    CAS  PubMed  Google Scholar 

  • Sohal J, Phan VT, Chan PV, Davis EM, Patel B, Kelly LM et al. (2003). A model of APL with FLT3 mutation is responsive to retinoic acid and a receptor tyrosine kinase inhibitor, SU11657. Blood 101: 3188–3197.

    CAS  PubMed  Google Scholar 

  • Soriano P, Jaenisch R . (1986). Retroviruses as probes for mammalian development: allocation of cells to the somatic and germ cell lineages. Cell 46: 19–29.

    CAS  PubMed  Google Scholar 

  • Stirewalt DL, Radich JP . (2003). The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 3: 650–665.

    CAS  PubMed  Google Scholar 

  • Sukhai MA, Wu X, Xuan Y, Zhang T, Reis PP, Dube K et al. (2004). Myeloid leukemia with promyelocytic features in transgenic mice expressing hCG-NuMA-RARalpha. Oncogene 23: 665–678.

    CAS  PubMed  Google Scholar 

  • Testa G, Stewart AF . (2000). Creating a transloxation. Engineering interchromosomal translocations in the mouse. EMBO Rep 1: 120–121.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thorsteinsdottir U, Krosl J, Kroon E, Haman A, Hoang T, Sauvageau G . (1999). The oncoprotein E2A-Pbx1a collaborates with Hoxa9 to acutely transform primary bone marrow cells. Mol Cell Biol 19: 6355–6366.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J, Lawrence HJ et al. (2002). Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 99: 121–129.

    CAS  PubMed  Google Scholar 

  • Traver D, Akashi K, Weissman IL, Lagasse E . (1998). Mice defective in two apoptosis pathways in the myeloid lineage develop acute myeloblastic leukemia. Immunity 9: 47–57.

    CAS  PubMed  Google Scholar 

  • Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. (2004). Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350: 1617–1628.

    CAS  PubMed  Google Scholar 

  • van der Lugt NM, Domen J, Linders K, van Roon M, Robanus-Maandag E, te Riele H et al. (1994). Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev 8: 757–769.

    CAS  PubMed  Google Scholar 

  • van der Weyden L, Adams DJ, Bradley A . (2002). Tools for targeted manipulation of the mouse genome. Physiol Genomics 11: 133–164.

    CAS  PubMed  Google Scholar 

  • Wang J, Iwasaki H, Krivtsov A, Febbo PG, Thorner AR, Ernst P et al. (2005). Conditional MLL-CBP targets GMP and models therapy-related myeloproliferative disease. EMBO J 24: 368–381.

    PubMed  PubMed Central  Google Scholar 

  • Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X et al. (1996). The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 87: 697–708.

    CAS  PubMed  Google Scholar 

  • Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, Cordon-Cardo C et al. (1998). Role of PML in cell growth and the retinoic acid pathway. Science 279: 1547–1551.

    CAS  PubMed  Google Scholar 

  • Warner JK, Wang JC, Takenaka K, Doulatov S, McKenzie JL, Harrington L et al. (2005). Direct evidence for cooperating genetic events in the leukemic transformation of normal human hematopoietic cells. Leukemia 19: 1794–1805.

    CAS  PubMed  Google Scholar 

  • Westervelt P, Lane AA, Pollock JL, Oldfather K, Holt MS, Zimonjic DB et al. (2003). High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARalpha expression. Blood 102: 1857–1865.

    CAS  PubMed  Google Scholar 

  • Wheatley K, Burnett AK, Goldstone AH, Gray RG, Hann IM, Harrison CJ, United Kingdom Medical Research Council's Adult and Childhood Leukaemia Working Parties et al. (1999). A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukaemia derived from the MRC AML 10 trial. Br J Haematol 107: 69–79.

    CAS  PubMed  Google Scholar 

  • Wunderlich M, Krejci O, Wei J, Mulloy JC . (2006). Human CD34+ cells expressing the inv(16) fusion protein exhibit a myelomonocytic phenotype with greatly enhanced proliferative ability. Blood 108: 1690–1697.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan M, Kanbe E, Peterson LF, Boyapati A, Miao Y, Wang Y et al. (2006). A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med 12: 945–949.

    CAS  PubMed  Google Scholar 

  • Yang R, Nakamaki T, Lubbert M, Said J, Sakashita A, Freyaldenhoven BS et al. (1999). Cyclin A1 expression in leukemia and normal hematopoietic cells. Blood 93: 2067–2074.

    CAS  PubMed  Google Scholar 

  • Yang Y, Wang W, Cleaves R, Zahurak M, Cheng L, Civin CI et al. (2002). Acceleration of G(1) cooperates with core binding factor beta-smooth muscle myosin heavy chain to induce acute leukemia in mice. Cancer Res 62: 2232–2235.

    CAS  PubMed  Google Scholar 

  • Yergeau DA, Hetherington CJ, Wang Q, Zhang P, Sharpe AH, Binder M et al. (1997). Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet 15: 303–306.

    CAS  PubMed  Google Scholar 

  • Yu Y, Bradley A . (2001). Engineering chromosomal rearrangements in mice. Nat Rev Genet 2: 780–790.

    CAS  PubMed  Google Scholar 

  • Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ et al. (2001). AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 98: 10398–10403.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Nasr R, Peres L, Riaucoux-Lormiere F, Honore N, Berthier C et al. (2007). RXR is an essential component of the oncogenic PML/RARA complex in vivo. Cancer Cell 12: 23–35.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Helse Vest Project numbers 911182 and 911388.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B T Gjertsen.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCormack, E., Bruserud, O. & Gjertsen, B. Review: genetic models of acute myeloid leukaemia. Oncogene 27, 3765–3779 (2008). https://doi.org/10.1038/onc.2008.16

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.16

Keywords

This article is cited by

Search

Quick links