Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Methyl jasmonate binds to and detaches mitochondria-bound hexokinase

Abstract

Cellular bio-energetic metabolism and mitochondria are recognized as potential targets for anticancer agents, due to the numerous relevant peculiarities cancer cells exhibit. Jasmonates are anticancer agents that interact directly with mitochondria. The aim of this study was to identify mitochondrial molecular targets of jasmonates. We report that jasmonates bind to hexokinase and detach it from the mitochondria and its mitochondrial anchor—the voltage-dependent anion channel (VDAC), as judged by hexokinase immunochemical and activity determinations, surface plasmon resonance analysis and planar lipid bilayer VDAC-activity analysis. Furthermore, the susceptibility of cancer cells and mitochondria to jasmonates is dependent on the expression of hexokinase, evaluated using hexokinase-overexpressing transfectants and its mitochondrial association. Many types of cancer cells exhibit overexpression of the key glycolytic enzyme, hexokinase, and its excessive binding to mitochondria. These characteristics are considered to play a pivotal role in cancer cell growth rate and survival. Thus, our findings provide an explanation for the selective effects of jasmonates on cancer cells. Most importantly, this is the first demonstration of a cytotoxic mechanism based on direct interaction between an anticancer agent and hexokinase. The proposed mechanism can serve to guide development of a new selective approach for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Al jamal JA . (2005). Involvement of porin N,N-dicyclohexylcarbodiimide-reactive domain in hexokinase binding to the outer mitochondrial membrane. Protein J 24: 1–8.

    Article  CAS  Google Scholar 

  • Azoulay-Zohar H, Israelson A, Abu-hamad S, Shoshan-Barmatz V . (2004). In self-defence: hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death. Biochem J 377: 347–355.

    Article  CAS  PubMed Central  Google Scholar 

  • Boozer C, Kim G, Cong S, Guan H, Londergan T . (2006). Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Curr Opin Biotechnol 17: 400–405.

    Article  CAS  Google Scholar 

  • Brawer MK . (2005). Lonidamine: basic science and rationale for treatment of prostatic proliferative disorders. Rev Urol 7: S21–S26.

    PubMed  PubMed Central  Google Scholar 

  • Bustamante E, Pedersen PL . (1977). High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci USA 74: 3735–3739.

    Article  CAS  Google Scholar 

  • Chini A, Fonseca S, Fernendez G, Adie B, Chico JM, Lorenzo O et al. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666–671.

    Article  CAS  Google Scholar 

  • Cuezva JM, Krajewska M, de Heredia ML, Krajewski S, Santamaria G, Kim H et al. (2002). The bioenergetic signature of cancer: A marker of tumor progression. Cancer Res 62: 6674–6681.

    CAS  PubMed  Google Scholar 

  • Dang CV, Semenza GL . (1999). Oncogenic alterations of metabolism. Trends Biochem Sci 24: 68–72.

    Article  CAS  Google Scholar 

  • Debatin K-M, Poncet D, Kroemer G . (2002). Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene 21: 8786–8803.

    Article  CAS  Google Scholar 

  • Ehsani-Zonouz A, Golestani A, Nemat-Gorgani M . (2001). Interaction of hexokinase with the outer mitochondrial membrane and a hydrophobic matrix. Mol Cell Biochem 223: 81–87.

    Article  CAS  Google Scholar 

  • Fingrut O, Flescher E . (2002). Plant stress hormones suppress the proliferation and induce apoptosis in human cancer cells. Leukemia 16: 608–616.

    Article  CAS  Google Scholar 

  • Fingrut O, Reischer D, Rotem R, Goldin N, Altboum I, Zan-Bar I et al. (2005). Jasmonates induce nonapoptotic death in high-resistance mutant p53-expressing B-lymphoma cells. Br J Pharmacol 146: 800–808.

    Article  CAS  PubMed Central  Google Scholar 

  • Flescher E . (2005). Jasmonates—a new family of anti-cancer agents. Anticancer Drugs 16: 911–916.

    Article  CAS  Google Scholar 

  • Flescher E . (2007). Jasmonates in cancer therapy. Cancer Lett 245: 1–10.

    Article  CAS  Google Scholar 

  • Galuzzi L, Larochette N, Zamzami N, Kroemer G . (2006). Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 25: 4812–4830.

    Article  Google Scholar 

  • Gincel D, Zaid H, Shoshan-Barmatz V . (2001). Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem J 358: 147–155.

    Article  CAS  PubMed Central  Google Scholar 

  • Goldin N, Heyfets A, Reischer D, Flescher E . (2007). Mitochondria-mediated ATP depletion by anti-cancer agents of the jasmonate family. J Bioenerg Biomemb 39: 51–57.

    Article  CAS  Google Scholar 

  • Green DR, Kroemer G . (2004). The pathophysiology of mitochondrial cell death. Science 305: 626–629.

    Article  CAS  PubMed Central  Google Scholar 

  • Hamilton MD, Nuara AA, Gammon DB, Buller RM, Evans DH . (2007). Duplex strand joining reactions catalyzed by vaccinia virus DNA polymerase. Nucleic Acids Res 35: 143–151.

    Article  CAS  Google Scholar 

  • Hammerman PS, Fox CJ, Thompson CB . (2004). Beginnings of a signal-transduction pathway for bioenergetic control of cell survival. Trends Biochem Sci 29: 586–592.

    Article  CAS  Google Scholar 

  • Heyfets A, Flescher E . (2007). Cooperative cytotoxicity of methyl jasmonate with anti-cancer drugs and 2-deoxy-d-glucose. Cancer Lett 50: 300–310.

    Article  Google Scholar 

  • Ishii Y, Kiyota H, Sakai S, Honma Y . (2004). Induction of differentiation of human myeloid leukemia cells by jasmonates, plant hormones. Leukemia 18: 1413–1419.

    Article  CAS  Google Scholar 

  • Isidoro A, Martinez M, Fernandez PL, Ortega AD, Santamaria G, Chamorro M et al. (2004). Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem J 378: 17–20.

    Article  CAS  PubMed Central  Google Scholar 

  • Keisari Y . (1992). A colorimetric microtiter assay for the quantitation of cytokine activity on adherent cells in tissue culture. J Immunol Methods 146: 155–161.

    Article  CAS  Google Scholar 

  • Kroemer G . (2003). The mitochondrial permeability transition pore complex as a pharmacological target. An introduction. Curr Med Chem 10: 1469–1472.

    Article  CAS  Google Scholar 

  • Kroemer G . (2006). Mitochondria in cancer. Oncogene 25: 4630–4632.

    Article  CAS  Google Scholar 

  • Lampidis TJ, Kurtoglu M, Maher JC, Liu H, Krishan A, Sheft V et al. (2006). Efficacy of 2-halogen substituted D-glucose analogs in blocking glycolysis and killing ‘hypoxic tumor cells’. Cancer Chemother Pharmacol 58: 725–734.

    Article  CAS  Google Scholar 

  • Lemasters JJ, Nieminen A-L, Qian T, Trost LC, Elmore SP, Nishimura Y et al. (1998). The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366: 177–196.

    Article  CAS  PubMed Central  Google Scholar 

  • Machida K, Ohta Y, Osada H . (2006). Supression of apoptosis by cyclophilin D via stabilization of hexokinase II mitochondrial binding in cancer cells. J Biol Chem 281: 14314–14320.

    Article  CAS  Google Scholar 

  • Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K et al. (2004). Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16: 819–830.

    Article  CAS  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL . (2006). Hexokinase II: Cancer′s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25: 4777–4786.

    Article  CAS  PubMed Central  Google Scholar 

  • Miccoli L, Beurdeley-Thomas A, De Oinieux G, Sureau F, Oudard S, Dutrillaux B et al. (1998). Light-induced photoactivation of hypericin affects the energy metabolism of human glioma cells by inhibiting hexokinase bound to mitochondria. Cancer Res 58: 5777–5786.

    CAS  PubMed  Google Scholar 

  • Nakashima RA, Mangan PS, Colombini M, Pedersen PL . (1986). Hexokinase receptor complex in hepatoma mitochondria: evidence from N,N'-dicyclohexylcarbodiimide-labeling studies for the involvement of the pore-forming protin VDAC. Biochemistry 25: 1015–1021.

    Article  CAS  Google Scholar 

  • Oudard S, Poirson F, Miccoli L, Bourgeois Y, Vassault A, Poisson M et al. (1995). Mitochondria-bound hexokinase as target for therapy of malignant gliomas. Int J Cancer 62: 216–222.

    Article  CAS  Google Scholar 

  • Pastorino JG, Hoek JB . (2003). Hexokinase II: the integration of energy metabolism and control of apoptosis. Curr Med Chem 10: 1535–1551.

    Article  CAS  Google Scholar 

  • Pastorino JG, Hoek JB, Shulga N . (2005). Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res 15: 10545–10554.

    Article  Google Scholar 

  • Pedersen PL . (1978). Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 22: 190–274.

    Article  CAS  Google Scholar 

  • Pedersen PL . (2007a). The cancer cell's ‘power plants’ as promising therapeutic targets: an overview. J Bioenerg Biomembr 39: 1–12.

    Article  CAS  Google Scholar 

  • Pedersen PL . (2007b). Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the ‘Warburg Effect’, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39: 211–222.

    Article  CAS  Google Scholar 

  • Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH . (2002). Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta 1355: 14–20.

    Article  Google Scholar 

  • Penso J, Beitner R . (2003). Lithium detaches hexokinase from mitochondria and inhibits proliferation of B16 melanoma cells. Mol Genet Metab 78: 74–78.

    Article  CAS  Google Scholar 

  • Reischer D, Heyfets A, Shimony S, Nordenberg J, Kashman Y, Flescher E . (2007). Effects of natural and novel synthetic jasmonates in experimental metastatic melanoma. Br J Pharmacol 150: 738–749.

    Article  CAS  PubMed Central  Google Scholar 

  • Robey RB, Hay N . (2005). Akt, hexokinase, mTOR: Targeting cellular energy metabolism for cancer therapy. Drug Discov Today Dis Mech 2: 239–246.

    Article  CAS  Google Scholar 

  • Robey RB, Hay N . (2006). Mitochondrial hexokinases, novel mediators of the antiapoptotic affects of growth factors and Akt. Oncogene 25: 4683–4696.

    Article  CAS  Google Scholar 

  • Rotem R, Heyfets A, Fingrut O, Blickstein D, Shaklai M, Flescher E . (2005). Jasmonates: novel anticancer agents acting directly and selectively on human cancer cell mitochondria. Cancer Res 65: 1984–1993.

    Article  CAS  Google Scholar 

  • Shoshan-Barmatz V, Israelson A . (2005). The voltage-dependent anion channel in endoplasmic/sarcoplasmic reticulum: characterization, modulation and possible function. J Membr Biol 204: 57–66.

    Article  CAS  Google Scholar 

  • Sun L, Shukair S, Naik TJ, Moazed F, Ardehali H . (2008). Glucose phosphorylation and mitochondrial binding are required fir the protective effects of hexokinase I and II. Mol Cell Biol 28: 1007–1017.

    Article  CAS  Google Scholar 

  • Varbiro G, Veres B, Gallyas F, Sumegi B . (2001). Direct effect of Taxol on free redical formation and mitochondrial permeability transition. Free Radic Biol Med 31: 548–558.

    Article  CAS  Google Scholar 

  • Warburg O, Dickens F, Kaiser Wilhelm-Institut für Biologie B . (1930). The Metabolism of Tumours: Investigations from the Kaiser-Wilhelm Institute for Biology, Berlin-Dahlem. Constable: London.

    Google Scholar 

  • Wilson JE . (1968). Brain hexokinase. J Biol Chem 243: 3640–3647.

    CAS  PubMed  Google Scholar 

  • Wilson JE . (1989). Rapid purification of mitochondrial hexokinase from rat brain by a single affinity chromatography step on Affi-Gel blue. Prep Biochem 19: 13–21.

    CAS  PubMed  Google Scholar 

  • Wilson JE . (1995). Hexokinases. Rev Physiol Biochem Pharmacol 126: 65–198.

    Article  CAS  Google Scholar 

  • Wilson JE . (2003). Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206: 2049–2057.

    Article  CAS  Google Scholar 

  • Wilson JE, Chung V . (1989). Rat brain hexokinase: Further studies on the specificity of the hexose and hexose 6-phosphate binding sites. Arch Biochem Biophys 269: 517–525.

    Article  CAS  Google Scholar 

  • Zaid H, Abu-Hamad S, Israelson A, Nathan I, Shoshan-Barmatz V . (2005). The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ 12: 751.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from Sepal Pharma SA and by a grant from the Ministry of Science, Culture & Sport, Israel and the DKFZ Deutsches Krebsforschungszentrum, Germany, to EF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Flescher.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldin, N., Arzoine, L., Heyfets, A. et al. Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. Oncogene 27, 4636–4643 (2008). https://doi.org/10.1038/onc.2008.108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.108

Keywords

This article is cited by

Search

Quick links