Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adenine riboswitches and gene activation by disruption of a transcription terminator

Abstract

A class of riboswitches that recognizes guanine and discriminates against other purine analogs was recently identified. RNAs that carry the consensus sequence and structural features of guanine riboswitches are located in the 5′ untranslated region (UTR) of numerous prokaryotic genes, where they control the expression of proteins involved in purine salvage and biosynthesis. We report that three representatives of this riboswitch class bind adenine with values for apparent dissociation constant (apparent Kd) that are several orders of magnitude lower than those for binding guanine. Because preference for adenine is attributable to a single nucleotide substitution, the RNA most likely recognizes its ligand by forming a Watson-Crick base pair. In addition, the adenine riboswitch associated with the ydhL gene of Bacillus subtilis functions as a genetic 'on' switch, wherein adenine binding causes a structural rearrangement that precludes formation of an intrinsic transcription terminator stem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Guanine- and adenine-specific riboswitches.
Figure 2: Ligand specificity of five G box RNAs.
Figure 3: Binding affinity of the ydhL aptamer for adenine.
Figure 4: Specificity of molecular recognition by the adenine aptamer from ydhL.
Figure 5: Interconversion of guanine- and adenine-specific aptamers.
Figure 6: Model for the genetic control of ydhL by an adenine riboswitch and its function as a gene-activating element.

Similar content being viewed by others

References

  1. Mandal, M., Boese, B., Winkler, W.C. & Breaker, R.R. Metabolite-sensing riboswitches control fundamental biochemical pathways in bacteria. Cell 113, 577–586 (2003).

    Article  CAS  Google Scholar 

  2. Winkler, W.C. & Breaker, R.R. Genetic control by metabolite-binding riboswitches. Chembiochem 4, 1024–1032 (2003).

    Article  CAS  Google Scholar 

  3. Sudarsan, N., Wickiser, J.K. Nakamura, S., Ebert, M.S. & Breaker, R.R. An mRNA structure that controls gene expression by binding lysine. Genes Dev. 17, 2685–2697 (2003).

    Article  Google Scholar 

  4. Winkler, W.C., Cohen-Chalamish, S. & Breaker, R.R. An mRNA structure that controls gene expression by binding FMN. Proc. Natl. Acad. USA 99, 15908–15913 (2002).

    Article  CAS  Google Scholar 

  5. Winkler, W.C., Nahvi, A., Sudarsan, N., Barrick, J.E. & Breaker, R.R. An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat. Struct. Biol. 10, 701–707 (2003).

    Article  CAS  Google Scholar 

  6. Nahvi, A. et al. Genetic control by a metabolite binding mRNA. Chem. Biol. 9, 1043–1049 (2002).

    Article  CAS  Google Scholar 

  7. Winkler, W., Nahvi, A. & Breaker, R.R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002).

    Article  CAS  Google Scholar 

  8. Cristiansen, L.C., Schou, S., Nygaard, P. & Saxild, H.H. Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. J. Bacteriol. 179, 2540–1550 (1997).

    Article  Google Scholar 

  9. Johansen, L.E., Nygaard, P., Lassen, C., Agersø, Y. & Saxild, H.H. Definition of a second Bacillus subtilis pur regulon comprising the pur and xpt-pbuX operons plus pbuG, nupG (yxjA), and pbuE (ydhL). J. Bacteriol. 185, 5200–5209 (2003).

    Article  CAS  Google Scholar 

  10. Soukup, G.A. & Breaker, R.R. Relationship between internucleotide linkage geometry and the stability of RNA. RNA 5, 1308–1325 (1999).

    Article  CAS  Google Scholar 

  11. Soukup, G.A., DeRose, E.C., Koizumi, M. & Breaker, R.R. Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. RNA 7, 524–536 (2001).

    Article  CAS  Google Scholar 

  12. Peracchi, A., Beigelman, L., Usman, N. & Herschlag, D. Rescue of abasic hammerhead ribozymes by exogenous addition of specific bases. Proc. Natl. Acad. Sci. USA 93, 11522–11527 (1996).

    Article  CAS  Google Scholar 

  13. Wilson, K.S. & von Hippel, P.H. Transcription termination at intrinsic terminators: the role of the RNA hairpin. Proc. Natl. Acad. Sci. USA 92, 8793–8797 (1995).

    Article  CAS  Google Scholar 

  14. Gusarov, I & Nudler, E. The mechanism of intrinsic transcription termination. Mol. Cell 4, 495–504 (1999).

    Article  Google Scholar 

  15. Mironov, A.S. et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111, 747–756 (2002).

    Article  CAS  Google Scholar 

  16. McDaniel, B.A.M., Grundy, F.J., Artsimovitch, I. & Henkin, T.M. Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. Proc. Natl. Acad. Sci. USA 100, 3083–3088 (2003).

    Article  CAS  Google Scholar 

  17. Epshtein, V., Mironov, A.S. & Nudler, E. The riboswitch-mediated control of sulfur metabolism in bacteria. Proc. Natl. Acad. Sci. USA 100, 5052–5056 (2003).

    Article  CAS  Google Scholar 

  18. Rosenfeld, N., Elowitz, M.B. & Alon, U. Negative autoregulation speeds the response times of transcription networks. J. Mol. Biol. 323, 785–793 (2002).

    Article  CAS  Google Scholar 

  19. Grundy, F.J. & Henkin, T.M. The T box and S box transcription termination control systems. Frontiers Biosci. 8, d20–31 (2003).

    Article  CAS  Google Scholar 

  20. Grundy, F.J., Winkler, W.C. & Henkin, T.M. tRNA-mediated transcription antitermination in vitro: codon-anticodon pairing independent of the ribosome. Proc. Natl. Acad. Sci. USA 99, 11121–11126 (2002).

    Article  CAS  Google Scholar 

  21. Miller, J.H. A Short Course in Bacterial Genetics (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1992).

    Google Scholar 

Download references

Acknowledgements

We thank members of the Breaker laboratory for helpful discussions and especially W.C. Winkler for helpful comments on the manuscript. This work was supported by grants from the US National Institutes of Health (GM 559343; NHLBI-N01-HV-28186) and the US National Science Foundation (EIA-0129939; EIA-0323510; EIA-0324045). R.R.B is also grateful for support from the Hereditary Disease Foundation and from the David and Lucile Packard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald R Breaker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, M., Breaker, R. Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 11, 29–35 (2004). https://doi.org/10.1038/nsmb710

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb710

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing