Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP

Abstract

The tumor-suppressor function of p53 relies on its transcriptional activity, which is modulated by post-translational modifications and interactions with regulatory proteins. The prolyl isomerase Pin1 has a central role in transducing phosphorylation of p53 into conformational changes that affect p53 stability and function. We found that Pin1 is required for efficient loading of p53 on target promoters upon stress. In addition, Pin1 is recruited to chromatin by p53 and stimulates binding of the p300 acetyltransferase and consequent p53 acetylation. Accordingly, tumor-associated mutations at Pin1-binding residues within the p53 proline-rich domain hamper acetylation of p53 by p300. After phosphorylation of p53 at Ser46 triggered by cytotoxic stimuli, Pin1 also mediates p53's dissociation from the apoptosis inhibitor iASPP, promoting cell death. In tumors bearing wild-type p53, expression of Pin1 and iASPP are inversely correlated, supporting the clinical relevance of these interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pin1 is required for binding of p53 to its target promoters.
Figure 2: Pin1 is recruited to p53-responsive promoters upon DNA damage.
Figure 3: Pin1-binding sites are essential for p53 functions.
Figure 4: Pin1 directly stimulates p53 acetylation by p300.
Figure 5: Pin1 promotes p300 recruitment and p53 acetylation on chromatin.
Figure 6: Pin1-target site Thr81-Pro82 and the codon 72 polymorphism affect p53 acetylation.
Figure 7: Pin1 is required for p53 dissociation from iASPP upon cytotoxic stress.
Figure 8: Model for regulation of p53 by Pin1 upon stress.

Similar content being viewed by others

References

  1. Appella, E. & Anderson, C.W. Post-translational modifications and activation of p53 by genotoxic stresses. Eur. J. Biochem. 268, 2764–2772 (2001).

    Article  CAS  Google Scholar 

  2. Lavin, M.F. & Gueven, N. The complexity of p53 stabilization and activation. Cell Death Differ. 13, 941–950 (2006).

    Article  CAS  Google Scholar 

  3. Gu, W. & Roeder, R.G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

    Article  CAS  Google Scholar 

  4. Luo, J. et al. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc. Natl. Acad. Sci. USA 101, 2259–2264 (2004).

    Article  CAS  Google Scholar 

  5. Knights, C.D. et al. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J. Cell Biol. 173, 533–544 (2006).

    Article  CAS  Google Scholar 

  6. Tang, Y., Luo, J., Zhang, W. & Gu, W. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell 24, 827–839 (2006).

    Article  CAS  Google Scholar 

  7. Sykes, S.M. et al. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol. Cell 24, 841–851 (2006).

    Article  CAS  Google Scholar 

  8. Ceskova, P., Chichger, H., Wallace, M., Vojtesek, B. & Hupp, T.R. On the mechanism of sequence-specific DNA-dependent acetylation of p53: the acetylation motif is exposed upon DNA binding. J. Mol. Biol. 357, 442–456 (2006).

    Article  CAS  Google Scholar 

  9. Yaffe, M.B. et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278, 1957–1960 (1997).

    Article  CAS  Google Scholar 

  10. Yeh, E.S. & Means, A.R. PIN1, the cell cycle and cancer. Nat. Rev. Cancer 7, 381–388 (2007).

    Article  CAS  Google Scholar 

  11. Bulavin, D.V. et al. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J. 18, 6845–6854 (1999).

    Article  CAS  Google Scholar 

  12. Buschmann, T. et al. Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol. Cell. Biol. 21, 2743–2754 (2001).

    Article  CAS  Google Scholar 

  13. Hofmann, T.G. et al. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat. Cell Biol. 4, 1–10 (2002).

    Article  CAS  Google Scholar 

  14. D'Orazi, G. et al. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat. Cell Biol. 4, 11–19 (2002).

    Article  CAS  Google Scholar 

  15. Radhakrishnan, S.K. & Gartel, A.L. CDK9 phosphorylates p53 on serine residues 33, 315 and 392. Cell Cycle 5, 519–521 (2006).

    Article  CAS  Google Scholar 

  16. Wang, Y. & Prives, C. Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 376, 88–91 (1995).

    Article  CAS  Google Scholar 

  17. Zacchi, P. et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419, 853–857 (2002).

    Article  CAS  Google Scholar 

  18. Zheng, H. et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419, 849–853 (2002).

    Article  CAS  Google Scholar 

  19. Wulf, G.M., Liou, Y.C., Ryo, A., Lee, S.W. & Lu, K.P. Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J. Biol. Chem. 277, 47976–47979 (2002).

    Article  CAS  Google Scholar 

  20. Berger, M., Stahl, N., Del Sal, G. & Haupt, Y. Mutations in proline 82 of p53 impair its activation by Pin1 and Chk2 in response to DNA damage. Mol. Cell. Biol. 25, 5380–5388 (2005).

    Article  CAS  Google Scholar 

  21. Walker, K.K. & Levine, A.J. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl. Acad. Sci. USA 93, 15335–15340 (1996).

    Article  CAS  Google Scholar 

  22. Berger, M., Vogt Sionov, R., Levine, A.J. & Haupt, Y. A role for the polyproline domain of p53 in its regulation by Mdm2. J. Biol. Chem. 276, 3785–3790 (2001).

    Article  CAS  Google Scholar 

  23. Dornan, D., Shimizu, H., Burch, L., Smith, A.J. & Hupp, T.R. The proline repeat domain of p53 binds directly to the transcriptional coactivator p300 and allosterically controls DNA-dependent acetylation of p53. Mol. Cell. Biol. 23, 8846–8861 (2003).

    Article  CAS  Google Scholar 

  24. Venot, C. et al. The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO J. 17, 4668–4679 (1998).

    Article  CAS  Google Scholar 

  25. Zhu, J., Jiang, J., Zhou, W., Zhu, K. & Chen, X. Differential regulation of cellular target genes by p53 devoid of the PXXP motifs with impaired apoptotic activity. Oncogene 18, 2149–2155 (1999).

    Article  CAS  Google Scholar 

  26. Toledo, F. et al. A mouse p53 mutant lacking the proline-rich domain rescues Mdm4 deficiency and provides insight into the Mdm2-Mdm4-p53 regulatory network. Cancer Cell 9, 273–285 (2006).

    Article  CAS  Google Scholar 

  27. Chipuk, J.E. et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010–1014 (2004).

    Article  CAS  Google Scholar 

  28. Bergamaschi, D. et al. iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human. Nat. Genet. 33, 162–167 (2003).

    Article  CAS  Google Scholar 

  29. Bergamaschi, D. et al. iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nat. Genet. 38, 1133–1141 (2006).

    Article  CAS  Google Scholar 

  30. Matlashewski, G.J. et al. Primary structure polymorphism at amino acid residue 72 of human p53. Mol. Cell. Biol. 7, 961–963 (1987).

    Article  CAS  Google Scholar 

  31. Thomas, M. et al. Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol. Cell. Biol. 19, 1092–1100 (1999).

    Article  CAS  Google Scholar 

  32. Sullivan, A. et al. Polymorphism in wild-type p53 modulates response to chemotherapy in vitro and in vivo. Oncogene 23, 3328–3337 (2004).

    Article  CAS  Google Scholar 

  33. Vassilev, L.T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  Google Scholar 

  34. Mantovani, F. et al. Pin1 links the activities of c-Abl and p300 in regulating p73 function. Mol. Cell 14, 625–636 (2004).

    Article  CAS  Google Scholar 

  35. Zhao, Y. et al. Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1). Mol. Cell. Biol. 26, 2782–2790 (2006).

    Article  CAS  Google Scholar 

  36. Barlev, N.A. et al. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell 8, 1243–1254 (2001).

    Article  CAS  Google Scholar 

  37. Zhou, X.Z. et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of cdc25 and tau proteins. Mol. Cell 6, 873–883 (2000).

    Article  CAS  Google Scholar 

  38. Ard, P.G. et al. Transcriptional regulation of the mdm2 oncogene by p53 requires TRRAP acetyltransferase complexes. Mol. Cell. Biol. 22, 5650–5661 (2002).

    Article  CAS  Google Scholar 

  39. Uchida, T. et al. Pin1 and Par14 peptidyl prolyl isomerase inhibitors block cell proliferation. Chem. Biol. 10, 15–24 (2003).

    Article  CAS  Google Scholar 

  40. Kern, S.E. et al. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256, 827–830 (1992).

    Article  CAS  Google Scholar 

  41. Dornan, D., Shimizu, H., Perkins, N.D. & Hupp, T.R. DNA-dependent acetylation of p53 by the transcription coactivator p300. J. Biol. Chem. 278, 13431–13441 (2003).

    Article  CAS  Google Scholar 

  42. Bao, L. et al. Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am. J. Pathol. 164, 1727–1737 (2004).

    Article  CAS  Google Scholar 

  43. Dornan, D. & Hupp, T.R. Inhibition of p53-dependent transcription by BOX-I phospho-peptide mimetics that bind to p300. EMBO Rep. 2, 139–144 (2001).

    Article  CAS  Google Scholar 

  44. Sun, X.F. et al. A novel p53 germline alteration identified in a late onset breast cancer kindred. Oncogene 13, 407–411 (1996).

    CAS  PubMed  Google Scholar 

  45. Wulf, G., Finn, G., Suizu, F. & Lu, K.P. Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat. Cell Biol. 7, 435–441 (2005).

    Article  CAS  Google Scholar 

  46. Xu, Y.X., Hirose, Y., Zhou, X.Z., Lu, K.P. & Manley, J.L. Pin1 modulates the structure and function of human RNA polymerase II. Genes Dev. 17, 2765–2776 (2003).

    Article  CAS  Google Scholar 

  47. Oda, K. et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849–862 (2000).

    Article  CAS  Google Scholar 

  48. Mayo, L.D. et al. Phosphorylation of human p53 at serine 46 determines promoter selection and whether apoptosis is attenuated or amplified. J. Biol. Chem. 280, 25953–25959 (2005).

    Article  CAS  Google Scholar 

  49. Samuels-Lev, Y. et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol. Cell 8, 781–794 (2001).

    Article  CAS  Google Scholar 

  50. Geng, Y. et al. Cyclin E ablation in the mouse. Cell 114, 431–443 (2003).

    Article  CAS  Google Scholar 

  51. Monte, M. et al. MAGE-A tumor antigens target p53 transactivation function through histone deacetylase recruitment and confer resistance to chemotherapeutic agents. Proc. Natl. Acad. Sci. USA 103, 11160–11165 (2006).

    Article  CAS  Google Scholar 

  52. Kaeser, M.D. & Iggo, R.D. Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc. Natl. Acad. Sci. USA 99, 95–100 (2002).

    Article  CAS  Google Scholar 

  53. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC(T) method. Methods 25, 402–408 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Schneider, M. Monte and our colleagues at the Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie for advice and discussion; A. Grison, A. Bisso, M. Mioni and A. Soldano for technical assistance; B. Amati (European Institute of Oncology) for critical reading of the manuscript; M. Murphy (Fox Chase Cancer Center), Y. Haupt (Hadassah University Hospital), M. Oren (Weizmann Institute) and G. Blandino (Regina Elena Cancer Institute) for providing reagents; and M. Giacca, M. Lusic, M. Bestagno, N. Gammoh and L. Banks for access to International Centre for Genetic Engineering and Biotechnology facilities. pGFP-p300 was provided by B. Amati; pcDNA3-p53-Pro72, pcDNA3-p53-Arg72 and pcDNA3-p53-R175H were provided by L. Banks; GFP-specific polyclonal antiserum was provided by C. Brancolini (Udine University); polyclonal antibody to HMGA1b was provided by G. Manfioletti (Trieste University); purified recombinant p300 was provided by R. Mantovani (Milan University). J.G. is an International Centre for Genetic Engineering and Biotechnology Fellow. T.C. is a clinical research fellow of Cancer Research UK. This work was supported by grants from the Associazione Italiana per la Ricerca sul Cancro, Association for International Cancer Research UK and Ministero dell'Università e della Ricerca to G.D.S. and by European Community Sixth Framework Programme funding (contract 503576). This publication reflects the authors' views and not necessarily those of the European Community. The European Community is not liable for any use that may be made of the information contained herein.

Author information

Authors and Affiliations

Authors

Contributions

F.M., F.T. and J.G. performed biochemical and cell biology experiments, P.S. and M.G. analyzed tissue samples, X.L. produced constructs and reagents, and T.C. supervised P.S. and M.G. and produced reagents. G.D.S. was responsible for the overall project.

Corresponding author

Correspondence to Giannino Del Sal.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Table 1, Supplementary Methods (PDF 526 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mantovani, F., Tocco, F., Girardini, J. et al. The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat Struct Mol Biol 14, 912–920 (2007). https://doi.org/10.1038/nsmb1306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1306

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing