Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The refined structure of nascent HDL reveals a key functional domain for particle maturation and dysfunction

A Corrigendum to this article was published on 01 June 2008

A Corrigendum to this article was published on 01 March 2008

This article has been updated

Abstract

The cardioprotective function of high-density lipoprotein (HDL) is largely attributed to its ability to facilitate transport of cholesterol from peripheral tissues to the liver. However, HDL may become dysfunctional through oxidative modification, impairing cellular cholesterol efflux. Here we report a refined molecular model of nascent discoidal HDL, determined using hydrogen-deuterium exchange mass spectrometry. The model reveals two apolipoprotein A1 (apoA1) molecules arranged in an antiparallel double-belt structure, with residues 159–180 of each apoA1 forming a protruding solvent-exposed loop. We further show that this loop, including Tyr166, a preferred target for site-specific oxidative modification within atheroma, directly interacts with and activates lecithin cholesterol acyl transferase. These studies identify previously uncharacterized structural features of apoA1 in discoidal HDL that are crucial for particle maturation, and elucidate a structural and molecular mechanism for generating a dysfunctional form of HDL in atherosclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solvent accessibility of lipid-free apoA1 and apoA1 within recombinant human discoidal HDL, revealed by hydrogen-deuterium exchange mass spectrometry.
Figure 2: The solar-flares model of discoidal HDL.
Figure 3: Residues Leu159–Leu170 of apoA1 in discoidal HDL directly interact with LCAT.
Figure 4: Peptide Leu159–Leu170 and Tyr166 of apoA1 are important for the activation of LCAT and are selectively targeted for MPO-catalyzed oxidative inactivation under physiological conditions.
Figure 5: Refined solar-flares model of discoidal HDL, illustrating sites of known protein-protein interactions and site-specific oxidative modifications reported within human atherosclerotic plaque.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Change history

  • 27 February 2008

    In the version of this article initially published, Figures 2c,d,e and 5 showed an incorrect model for discoidal HDL, with the apoA1 molecules in a clockwise orientation, in contrast with their counterclockwise orientation in the final mode described in the text. The correct model is deposited under the same accession number, PM0074956, at http://mi.caspur.it/PMDB/main.php. The error has been corrected in the PDF and HTML versions of the article.

  • 22 May 2008

    In the version of this article initially published, the legend text for Figure 2c was incorrect, with the terms “clockwise” and “counterclockwise” swapped. The error has been corrected in the PDF and HTML versions of the article.

References

  1. Barter, P.J. & Rye, K.A. Relationship between the concentration and antiatherogenic activity of high-density lipoproteins. Curr. Opin. Lipidol. 17, 399–403 (2006).

    Article  CAS  Google Scholar 

  2. Rader, D.J. Mechanisms of disease: HDL metabolism as a target for novel therapies. Nat. Clin. Pract. Cardiovasc. Med. 4, 102–109 (2007).

    Article  CAS  Google Scholar 

  3. Assmann, G. & Gotto, A.M., Jr. HDL cholesterol and protective factors in atherosclerosis. Circulation 109, III8–III14 (2004).

    Article  Google Scholar 

  4. Plump, A.S., Scott, C.J. & Breslow, J.L. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc. Natl. Acad. Sci. USA 91, 9607–9611 (1994).

    Article  CAS  Google Scholar 

  5. Nissen, S.E. et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. J. Am. Med. Assoc. 290, 2292–2300 (2003).

    Article  CAS  Google Scholar 

  6. Linsel-Nitschke, P. & Tall, A.R. HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat. Rev. Drug Discov. 4, 193–205 (2005).

    Article  CAS  Google Scholar 

  7. Ansell, B.J. et al. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation 108, 2751–2756 (2003).

    Article  CAS  Google Scholar 

  8. Nicholls, S.J., Zheng, L. & Hazen, S.L. Formation of dysfunctional high-density lipoprotein by myeloperoxidase. Trends Cardiovasc. Med. 15, 212–219 (2005).

    Article  CAS  Google Scholar 

  9. Kontush, A. & Chapman, M.J. Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol. Rev. 58, 342–374 (2006).

    Article  CAS  Google Scholar 

  10. Tall, A.R. CETP inhibitors to increase HDL cholesterol levels. N. Engl. J. Med. 356, 1364–1366 (2007).

    Article  CAS  Google Scholar 

  11. Nissen, S.E. et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med. 356, 1304–1316 (2007).

    Article  CAS  Google Scholar 

  12. Kastelein, J.J. et al. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N. Engl. J. Med. 356, 1620–1630 (2007).

    Article  CAS  Google Scholar 

  13. Zheng, L. et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J. Clin. Invest. 114, 529–541 (2004).

    Article  CAS  Google Scholar 

  14. Peng, D.Q. et al. Tyrosine modification is not required for myeloperoxidase-induced loss of apolipoprotein A-I functional activities. J. Biol. Chem. 280, 33775–33784 (2005).

    Article  CAS  Google Scholar 

  15. Zheng, L. et al. Localization of nitration and chlorination sites on apolipoprotein A-I catalyzed by myeloperoxidase in human atheroma and associated oxidative impairment in ABCA1-dependent cholesterol efflux from macrophages. J. Biol. Chem. 280, 38–47 (2005).

    Article  CAS  Google Scholar 

  16. Bergt, C. et al. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc. Natl. Acad. Sci. USA 101, 13032–13037 (2004).

    Article  CAS  Google Scholar 

  17. Shao, B. et al. Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J. Biol. Chem. 280, 5983–5993 (2005).

    Article  CAS  Google Scholar 

  18. Ajees, A.A., Anantharamaiah, G.M., Mishra, V.K., Hussain, M.M. & Murthy, H.M. Crystal structure of human apolipoprotein A-I: insights into its protective effect against cardiovascular diseases. Proc. Natl. Acad. Sci. USA 103, 2126–2131 (2006).

    Article  CAS  Google Scholar 

  19. Li, Y., Kijac, A.Z., Sligar, S.G. & Rienstra, C.M. Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy. Biophys. J. 91, 3819–3828 (2006).

    Article  CAS  Google Scholar 

  20. Segrest, J.P. et al. A detailed molecular belt model for apolipoprotein A-I in discoidal high density lipoprotein. J. Biol. Chem. 274, 31755–31758 (1999).

    Article  CAS  Google Scholar 

  21. Maiorano, J.N., Jandacek, R.J., Horace, E.M. & Davidson, W.S. Identification and structural ramifications of a hinge domain in apolipoprotein A-I discoidal high-density lipoproteins of different size. Biochemistry 43, 11717–11726 (2004).

    Article  CAS  Google Scholar 

  22. Silva, R.A., Hilliard, G.M., Li, L., Segrest, J.P. & Davidson, W.S. A mass spectrometric determination of the conformation of dimeric apolipoprotein A-I in discoidal high density lipoproteins. Biochemistry 44, 8600–8607 (2005).

    Article  CAS  Google Scholar 

  23. Bhat, S., Sorci-Thomas, M.G., Alexander, E.T., Samuel, M.P. & Thomas, M.J. Intermolecular contact between globular N-terminal fold and C-terminal domain of ApoA-I stabilizes its lipid-bound conformation: studies employing chemical cross-linking and mass spectrometry. J. Biol. Chem. 280, 33015–33025 (2005).

    Article  CAS  Google Scholar 

  24. Thomas, M.J., Bhat, S. & Sorci-Thomas, M.G. The use of chemical cross-linking and mass spectrometry to elucidate the tertiary conformation of lipid-bound apolipoprotein A-I. Curr. Opin. Lipidol. 17, 214–220 (2006).

    Article  CAS  Google Scholar 

  25. Zannis, V.I., Chroni, A. & Krieger, M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J. Mol. Med. 84, 276–294 (2006).

    Article  CAS  Google Scholar 

  26. Alexander, E.T. et al. Apolipoprotein A-I helix 6 negatively charged residues attenuate lecithin-cholesterol acyltransferase (LCAT) reactivity. Biochemistry 44, 5409–5419 (2005).

    Article  CAS  Google Scholar 

  27. Mishra, V.K. et al. Association of a model class A (apolipoprotein) amphipathic alpha helical peptide with lipid: high resolution NMR studies of peptide.lipid discoidal complexes. J. Biol. Chem. 281, 6511–6519 (2006).

    Article  CAS  Google Scholar 

  28. Minnich, A. et al. Site-directed mutagenesis and structure-function analysis of the human apolipoprotein A-I. Relation between lecithin-cholesterol acyltransferase activation and lipid binding. J. Biol. Chem. 267, 16553–16560 (1992).

    CAS  PubMed  Google Scholar 

  29. Sorci-Thomas, M.G., Curtiss, L., Parks, J.S., Thomas, M.J. & Kearns, M.W. Alteration in apolipoprotein A-I 22-mer repeat order results in a decrease in lecithin:cholesterol acyltransferase reactivity. J. Biol. Chem. 272, 7278–7284 (1997).

    Article  CAS  Google Scholar 

  30. Banka, C.L., Bonnet, D.J., Black, A.S., Smith, R.S. & Curtiss, L.K. Localization of an apolipoprotein A-I epitope critical for activation of lecithin-cholesterol acyltransferase. J. Biol. Chem. 266, 23886–23892 (1991).

    CAS  PubMed  Google Scholar 

  31. Borhani, D.W., Rogers, D.P., Engler, J.A. & Brouillette, C.G. Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc. Natl. Acad. Sci. USA 94, 12291–12296 (1997).

    Article  CAS  Google Scholar 

  32. Rogers, D.P. et al. Truncation of the amino terminus of human apolipoprotein A-I substantially alters only the lipid-free conformation. Biochemistry 36, 288–300 (1997).

    Article  CAS  Google Scholar 

  33. Martin, D.D., Budamagunta, M.S., Ryan, R.O., Voss, J.C. & Oda, M.N. Apolipoprotein A-I assumes a “looped belt” conformation on reconstituted high density lipoprotein. J. Biol. Chem. 281, 20418–20426 (2006).

    Article  CAS  Google Scholar 

  34. Furbee, J.W., Jr., Sawyer, J.K. & Parks, J.S. Lecithin:cholesterol acyltransferase deficiency increases atherosclerosis in the low density lipoprotein receptor and apolipoprotein E knockout mice. J. Biol. Chem. 277, 3511–3519 (2002).

    Article  CAS  Google Scholar 

  35. Lambert, G. et al. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice. J. Biol. Chem. 276, 15090–15098 (2001).

    Article  CAS  Google Scholar 

  36. Lee, R.G. et al. Plasma cholesteryl esters provided by lecithin:cholesterol acyltransferase and acyl-coenzyme a:cholesterol acyltransferase 2 have opposite atherosclerotic potential. Circ. Res. 95, 998–1004 (2004).

    Article  CAS  Google Scholar 

  37. Hovingh, G.K. et al. Compromised LCAT function is associated with increased atherosclerosis. Circulation 112, 879–884 (2005).

    Article  CAS  Google Scholar 

  38. Hovingh, G.K. et al. Inherited disorders of HDL metabolism and atherosclerosis. Curr. Opin. Lipidol. 16, 139–145 (2005).

    Article  CAS  Google Scholar 

  39. Matz, C.E. & Jonas, A. Micellar complexes of human apolipoprotein A-I with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersions. J. Biol. Chem. 257, 4535–4540 (1982).

    CAS  PubMed  Google Scholar 

  40. Sali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  CAS  Google Scholar 

  41. Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  Google Scholar 

  42. Chisholm, J.W., Gebre, A.K. & Parks, J.S. Characterization of C-terminal histidine-tagged human recombinant lecithin:cholesterol acyltransferase. J. Lipid Res. 40, 1512–1519 (1999).

    CAS  PubMed  Google Scholar 

  43. Parks, J.S., Gebre, A.K. & Furbee, J.W. Lecithin-cholesterol acyltransferase. Assay of cholesterol esterification and phospholipase A2 activities. Methods Mol. Biol. 109, 123–131 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants P01 HL076491, P50 HL77107, HL70621, HL066082, 1R15 GM070469-01, P01 HL049373 and HL 054176, and the Cleveland Clinic Foundation General Clinical Research Center (M01 RR018390). Z.W. was partially supported by an American Heart Association Fellowship Award.

Author information

Authors and Affiliations

Authors

Contributions

Z.W. and S.L.H. designed all studies and prepared the manuscript. Z.W. carried out all biochemical studies. V.G., M.A.W. and J.M.S. performed computational modeling. J.D.S. and J.S.P. assisted in generation of recombinant proteins. L.Z. and Z.W. performed all proteomic studies.

Corresponding author

Correspondence to Stanley L Hazen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1, Supplementary Tables 1 and 2, Supplementary Methods (PDF 757 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z., Wagner, M., Zheng, L. et al. The refined structure of nascent HDL reveals a key functional domain for particle maturation and dysfunction. Nat Struct Mol Biol 14, 861–868 (2007). https://doi.org/10.1038/nsmb1284

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1284

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing