Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

The N-end rule at atomic resolution

The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. The N-end rule pathway, ubiquitin-dependent in eukaryotes, is also present in prokaryotes, which lack the ubiquitin system. An illuminating new study presents the crystal structure of a bacterial N-end rule recognition component in complex with a peptide containing a cognate degradation signal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The N-end rule pathway in eukaryotes and prokaryotes.

References

  1. Varshavsky, A. J. Biol. Chem. 283, 34469–34489 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Varshavsky, A. Protein Sci. 15, 647–654 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gottesman, S. Annu. Rev. Cell Dev. Biol. 19, 565–587 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. McAdams, H.H. & Shapiro, L. Science 301, 1874–1877 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Ravid, T. & Hochstrasser, M. Nat. Rev. Mol. Cell Biol. 9, 679–689 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanna, J. & Finley, D. FEBS Lett. 581, 2854–2861 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baker, T.A. & Sauer, R.T. Trends Biochem. Sci. 31, 647–653 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bukau, B., Weissman, J. & Horwich, A. Cell 125, 443–451 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Bachmair, A., Finley, D. & Varshavsky, A. Science 234, 179–186 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Bachmair, A. & Varshavsky, A. Cell 56, 1019–1032 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Mogk, A., Schmidt, R. & Bukau, B. Trends Cell Biol. 17, 165–172 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Tasaki, T. & Kwon, Y.T. Trends Biochem. Sci. 32, 520–528 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Tobias, J.W., Shrader, T.E., Rocap, G. & Varshavsky, A. Science 254, 1374–1377 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Watanabe, K. et al. Nature 449, 867–871 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Graciet, E. et al. Proc. Natl. Acad. Sci. USA 103, 3078–3083 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Erbse, A. et al. Nature 439, 753–756 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Hou, J.Y., Sauer, R.T. & Baker, T.A. Nat. Struct. Mol. Biol. 15, 288–294 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, K.H., Oakes, E.S.C., Sauer, R.T. & Baker, T.A. J. Biol. Chem. 283, 24600–24607 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kwon, Y.T. et al. Science 297, 96–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Zeth, K. et al. Nat. Struct. Biol. 9, 906–911 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Guo, F., Esser, L., Singh, S.K., Maurizi, M.R. & Xia, D. J. Biol. Chem. 277, 46753–46762 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, K.H., Roman-Hernandez, G., Grant, R.A., Sauer, T.T. & Baker, T.A. Mol. Cell 32, 11–20 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Iyer, L.M., Burroughs, A.M. & Aravind, L. Genome Biol. 7, R60 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pearce, M.J., Mintseris, J., Ferreyra, J., Gygi, S.P. & Darwin, K.H. Science 322, 1104–1107 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lynch, M. The Origins of Genome Architecture (Sinauer Associates, Sunderland, MA, 2007).

    Google Scholar 

Download references

Acknowledgements

I thank C. Brower, R. Deshaies, D. Finley, M. Hochstrasser, A. Shemorry and W. Tansey for comments. Studies in my laboratory are supported by grants from the US National Institutes of Health, the Ellison Medical Foundation and the Sandler Program for Asthma Research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varshavsky, A. The N-end rule at atomic resolution. Nat Struct Mol Biol 15, 1238–1240 (2008). https://doi.org/10.1038/nsmb1208-1238

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1208-1238

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing