Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates

Abstract

SUMO processing and deconjugation are essential proteolytic activities for nuclear metabolism and cell-cycle progression in yeast and higher eukaryotes. To elucidate the mechanisms used during substrate lysine deconjugation, SUMO isoform processing and SUMO isoform interactions, X-ray structures were determined for a catalytically inert SENP2 protease domain in complex with conjugated RanGAP1–SUMO-1 or RanGAP1–SUMO-2, or in complex with SUMO-2 or SUMO-3 precursors. Common features within the active site include a 90° kink proximal to the scissile bond that forces C-terminal amino acid residues or the lysine side chain toward a protease surface that appears optimized for lysine deconjugation. Analysis of this surface reveals SENP2 residues, particularly Met497, that mediate, and in some instances reverse, in vitro substrate specificity. Mutational analysis and biochemistry provide a mechanism for SENP2 substrate preferences that explains why SENP2 catalyzes SUMO deconjugation more efficiently than processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of SENP2 deconjugation complexes with RanGAP1–SUMO-1 and RanGAP1–SUMO-2.
Figure 2: Comparative analysis of SENP2–SUMO-1 and SENP2–SUMO-2/3.
Figure 3: Structure of the SENP2–SUMO precursor complexes.
Figure 4: Structures of the productive and nonproductive SENP2–pre-SUMO-3 complexes.
Figure 5: Comparison of the hydrogen bond coordination of the ε and α peptide bonds in the deconjugation and processing complexes.
Figure 6: Comparative proteolysis assays for SUMO-1, SUMO-2 and SUMO-3 processing and deconjugation by SENP2 alanine-substituted mutants.
Figure 7: Comparative SENP2 mutagenesis analysis of processing reactions for pre-SUMO-1, pre-SUMO-2 and pre-SUMO-3 and deconjugation of RanGAP1–SUMO-1 and RanGAP1–SUMO-2/3 substrates.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  2. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006).

    Article  CAS  Google Scholar 

  3. Saitoh, H., Pu, R.T. & Dasso, M. SUMO-1: wrestling with a new ubiquitin-related modifier. Trends Biochem. Sci. 22, 374–376 (1997).

    Article  CAS  Google Scholar 

  4. Owerbach, D., McKay, E.M., Yeh, E.T., Gabbay, K.H. & Bohren, K.M. A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem. Biophys. Res. Commun. 337, 517–520 (2005).

    Article  CAS  Google Scholar 

  5. Tatham, M.H. et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374 (2001).

    Article  CAS  Google Scholar 

  6. Cheng, C.H. et al. SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev. 20, 2067–2081 (2006).

    Article  CAS  Google Scholar 

  7. Melchior, F., Schergaut, M. & Pichler, A. SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem. Sci. 28, 612–618 (2003).

    Article  CAS  Google Scholar 

  8. Yeh, E.T., Gong, L. & Kamitani, T. Ubiquitin-like proteins: new wines in new bottles. Gene 248, 1–14 (2000).

    Article  CAS  Google Scholar 

  9. Yamaguchi, T. et al. Mutation of SENP1/SuPr-2 reveals an essential role for desumoylation in mouse development. Mol. Cell. Biol. 25, 5171–5182 (2005).

    Article  CAS  Google Scholar 

  10. Di Bacco, A. et al. The SUMO-specific protease SENP5 is required for cell division. Mol. Cell. Biol. 26, 4489–4498 (2006).

    Article  CAS  Google Scholar 

  11. Bailey, D. & O'Hare, P. Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1. J. Biol. Chem. 279, 692–703 (2004).

    Article  CAS  Google Scholar 

  12. Hang, J. & Dasso, M. Association of the human SUMO-1 protease SENP2 with the nuclear pore. J. Biol. Chem. 277, 19961–19966 (2002).

    Article  CAS  Google Scholar 

  13. Nishida, T., Tanaka, H. & Yasuda, H. A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1) localized in the nucleolus at interphase. Eur. J. Biochem. 267, 6423–6427 (2000).

    Article  CAS  Google Scholar 

  14. Zhang, H., Saitoh, H. & Matunis, M.J. Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol. Cell. Biol. 22, 6498–6508 (2002).

    Article  CAS  Google Scholar 

  15. Gong, L. & Yeh, E.T. Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J. Biol. Chem. 281, 15869–15877 (2006).

    Article  CAS  Google Scholar 

  16. Kim, K.I. et al. A new SUMO-1-specific protease, SUSP1, that is highly expressed in reproductive organs. J. Biol. Chem. 275, 14102–14106 (2000).

    Article  CAS  Google Scholar 

  17. Li, S.J. & Hochstrasser, M. The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol. Cell. Biol. 20, 2367–2377 (2000).

    Article  CAS  Google Scholar 

  18. Panse, V.G., Kuster, B., Gerstberger, T. & Hurt, E. Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nat. Cell Biol. 5, 21–27 (2003).

    Article  CAS  Google Scholar 

  19. Nishida, T., Kaneko, F., Kitagawa, M. & Yasuda, H. Characterization of a novel mammalian SUMO-1/Smt3-specific isopeptidase, a homologue of rat axam, which is an axin-binding protein promoting beta-catenin degradation. J. Biol. Chem. 276, 39060–39066 (2001).

    Article  CAS  Google Scholar 

  20. Reverter, D. & Lima, C.D. A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. Structure 12, 1519–1531 (2004).

    Article  CAS  Google Scholar 

  21. Gong, L., Millas, S., Maul, G. & Yeh, E.T. Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J. Biol. Chem. 275, 3355–3359 (2000).

    Article  CAS  Google Scholar 

  22. Shen, L.N., Dong, C., Liu, H., Naismith, J.H. & Hay, R.T. The structure of SENP1-SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing. Biochem. J. 397, 279–288 (2006).

    Article  CAS  Google Scholar 

  23. Mossessova, E. & Lima, C.D. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865–876 (2000).

    Article  CAS  Google Scholar 

  24. Xu, Z. et al. Crystal structure of the SENP1 mutant C603S-SUMO complex reveals the hydrolytic mechanism of SUMO specific protease. Biochem. J. 398, 345–352 (2006).

    Article  CAS  Google Scholar 

  25. Rodriguez, M.S., Dargemont, C. & Hay, R.T. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 276, 12654–12659 (2001).

    Article  CAS  Google Scholar 

  26. Sampson, D.A., Wang, M. & Matunis, M.J. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem. 276, 21664–21669 (2001).

    Article  CAS  Google Scholar 

  27. Bernier-Villamor, V., Sampson, D.A., Matunis, M.J. & Lima, C.D. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345–356 (2002).

    Article  CAS  Google Scholar 

  28. Lin, D. et al. Identification of a substrate recognition site on Ubc9. J. Biol. Chem. 277, 21740–21748 (2002).

    Article  CAS  Google Scholar 

  29. Reverter, D. & Lima, C.D. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435, 687–692 (2005).

    Article  CAS  Google Scholar 

  30. Yunus, A.A. & Lima, C.D. Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Nat. Struct. Mol. Biol. 13, 491–499 (2006).

    Article  CAS  Google Scholar 

  31. Rousseau, F., Schymkowitz, J.W. & Itzhaki, L.S. The unfolding story of three-dimensional domain swapping. Structure 11, 243–251 (2003).

    Article  CAS  Google Scholar 

  32. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  33. Johnston, S.C., Larsen, C.N., Cook, W.J., Wilkinson, K.D. & Hill, C.P. Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 Å resolution. EMBO J. 16, 3787–3796 (1997).

    Article  CAS  Google Scholar 

  34. Johnston, S.C., Riddle, S.M., Cohen, R.E. & Hill, C.P. Structure basis for the specificity of ubiquitin c-terminal hydrolases. EMBO J. 18, 3877–3887 (1999).

    Article  CAS  Google Scholar 

  35. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  36. Collaborative Computational Project, No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  37. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–118 (1991).

    Article  Google Scholar 

  38. Brünger, A.T. et al. Crystallography and NMR System—a new software suite for macromolecular and structure determination. Acta Crystallogr D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  39. Laskowski, R., MacArthur, M., Hutchinson, E. & Thorton, J. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  40. Navaza, J. An automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  41. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, USA, 2002).

    Google Scholar 

Download references

Acknowledgements

Use of the APS was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. W-31-109-Eng-38. Use of the SGX Collaborative Access Team (SGX-CAT) beamline facilities at Sector 31 of the APS was provided by SGX Pharmaceuticals, Inc., who constructed and operates the facility. Use of the NE-CAT beamline at Sector 24 is based upon research conducted at the Northeastern Collaborative Access Team beamlines of the APS, which is supported by award RR-15301 from the National Center for Research Resources at the US National Institutes of Health (NIH). Beamline X29A at the National Synchrotron Light Source is supported by the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy and the National Center for Research Resources of the NIH. D.R. and C.D.L. are supported in part by NIH grant GM65872. D.R. acknowledges support from the Charles H. Revson Foundation and C.D.L. acknowledges support from the Rita Allen Foundation.

Author information

Authors and Affiliations

Authors

Contributions

D.R. generated the data. D.R. and C.D.L interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Christopher D Lima.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sequence alignment for Senp/Ulp and SUMO family members. (PDF 67 kb)

Supplementary Fig. 2

Domain-swapped RanGAP1 structures. (PDF 630 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reverter, D., Lima, C. Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates. Nat Struct Mol Biol 13, 1060–1068 (2006). https://doi.org/10.1038/nsmb1168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing