Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamically driven protein allostery

Abstract

Allosteric interactions are typically considered to proceed through a series of discrete changes in bonding interactions that alter the protein conformation. Here we show that allostery can be mediated exclusively by transmitted changes in protein motions. We have characterized the negatively cooperative binding of cAMP to the dimeric catabolite activator protein (CAP) at discrete conformational states. Binding of the first cAMP to one subunit of a CAP dimer has no effect on the conformation of the other subunit. The dynamics of the system, however, are modulated in a distinct way by the sequential ligand binding process, with the first cAMP partially enhancing and the second cAMP completely quenching protein motions. As a result, the second cAMP binding incurs a pronounced conformational entropic penalty that is entirely responsible for the observed cooperativity. The results provide strong support for the existence of purely dynamics-driven allostery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distinct conformational states of CAPN.
Figure 2: Effect of sequential cAMP binding on the structure of CAPN, assessed by chemical shift mapping.
Figure 3: Effect of sequential cAMP binding on the slow motions of CAPN.
Figure 4: CPMG relaxation dispersion data of 15N backbone amides of CAPN.
Figure 5: Effect of sequential cAMP binding on the fast motions of CAPN.
Figure 6: Effect of sequential binding of cAMP to CAPN on amide exchange rates, shown as the kex1/kex2 ratio for binding of each cAMP molecule (where kex1 and kex2 are exchange rates before and after cAMP binding, respectively).
Figure 7: Energetics of cooperative sequential binding of cAMP to CAPN.
Figure 8: Effect of sequential binding of cAMP on order parameters of CAPN.
Figure 9: Overall effect of sequential cAMP binding on conformation and dynamics of CAPN.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hardy, J.A. & Wells, J.A. Searching for new allosteric sites in enzymes. Curr. Opin. Struct. Biol. 14, 706–715 (2004).

    Article  CAS  Google Scholar 

  2. Gao, Z.G. & Jacobson, K.A. Allosterism in membrane receptors. Drug Discov. Today 11, 191–202 (2006).

    Article  CAS  Google Scholar 

  3. Swain, J.F. & Gierasch, L.M. The changing landscape of protein allostery. Curr. Opin. Struct. Biol. 16, 102–108 (2006).

    Article  CAS  Google Scholar 

  4. Suel, G.M., Lockless, S.W., Wall, M.A. & Ranganathan, R. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 10, 59–69 (2003).

    Article  Google Scholar 

  5. Koshland, D.E., Jr. Conformational changes: how small is big enough? Nat. Med. 4, 1112–1114 (1998).

    Article  CAS  Google Scholar 

  6. Changeux, J.P. & Edelstein, S.J. Allosteric mechanisms of signal transduction. Science 308, 1424–1428 (2005).

    Article  CAS  Google Scholar 

  7. Bray, D. & Duke, T. Conformational spread: the propagation of allosteric states in large multiprotein complexes. Annu. Rev. Biophys. Biomol. Struct. 33, 53–73 (2004).

    Article  CAS  Google Scholar 

  8. Wand, A.J. Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat. Struct. Biol. 8, 926–931 (2001).

    Article  CAS  Google Scholar 

  9. Homans, S.W. Probing the binding entropy of ligand-protein interactions by NMR. ChemBioChem 6, 1585–1591 (2005).

    Article  CAS  Google Scholar 

  10. Cooper, A. & Dryden, D.T. Allostery without conformational change. A plausible model. Eur. Biophys. J. 11, 103–109 (1984).

    Article  CAS  Google Scholar 

  11. Freire, E. The propagation of binding interactions to remote sites in proteins: analysis of the binding of the monoclonal antibody D1.3 to lysozyme. Proc. Natl. Acad. Sci. USA 96, 10118–10122 (1999).

    Article  CAS  Google Scholar 

  12. Pan, H., Lee, J.C. & Hilser, V.J. Binding sites in Escherichia coli dihydrofolate reductase communicate by modulating the conformational ensemble. Proc. Natl. Acad. Sci. USA 97, 12020–12025 (2000).

    Article  CAS  Google Scholar 

  13. Kern, D. & Zuiderweg, E.R. The role of dynamics in allosteric regulation. Curr. Opin. Struct. Biol. 13, 748–757 (2003).

    Article  CAS  Google Scholar 

  14. Stevens, S.Y., Sanker, S., Kent, C. & Zuiderweg, E.R. Delineation of the allosteric mechanism of a cytidylyltransferase exhibiting negative cooperativity. Nat. Struct. Biol. 8, 947–952 (2001).

    Article  CAS  Google Scholar 

  15. Maler, L., Blankenship, J., Rance, M. & Chazin, W.J. Site-site communication in the EF-hand Ca2+-binding protein calbindin D9k. Nat. Struct. Biol. 7, 245–250 (2000).

    Article  CAS  Google Scholar 

  16. Lee, A.L., Kinnear, S.A. & Wand, A.J. Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nat. Struct. Biol. 7, 72–77 (2000).

    Article  CAS  Google Scholar 

  17. Fuentes, E.J., Der, C.J. & Lee, A.L. Ligand-dependent dynamics and intramolecular signaling in a PDZ domain. J. Mol. Biol. 335, 1105–1115 (2004).

    Article  CAS  Google Scholar 

  18. Koshland, D.E., Jr. The structural basis of negative cooperativity: receptors and enzymes. Curr. Opin. Struct. Biol. 6, 757–761 (1996).

    Article  CAS  Google Scholar 

  19. Brown, A.M. & Crothers, D.M. Modulation of the stability of a gene-regulatory protein dimer by DNA and cAMP. Proc. Natl. Acad. Sci. USA 86, 7387–7391 (1989).

    Article  CAS  Google Scholar 

  20. Harman, J.G. Allosteric regulation of the cAMP receptor protein. Biochim. Biophys. Acta 1547, 1–17 (2001).

    Article  CAS  Google Scholar 

  21. Passner, J.M., Schultz, S.C. & Steitz, T.A. Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 A resolution. J. Mol. Biol. 304, 847–859 (2000).

    Article  CAS  Google Scholar 

  22. Heyduk, E., Heyduk, T. & Lee, J.C. Intersubunit communications in Escherichia coli cyclic AMP receptor protein: studies of the ligand binding domain. Biochemistry 31, 3682–3688 (1992).

    Article  CAS  Google Scholar 

  23. Akke, M. NMR methods for characterizing microsecond to millisecond dynamics in recognition and catalysis. Curr. Opin. Struct. Biol. 12, 642–647 (2002).

    Article  CAS  Google Scholar 

  24. Volkman, B.F., Lipson, D., Wemmer, D.E. & Kern, D. Two-state allosteric behavior in a single-domain signaling protein. Science 291, 2429–2433 (2001).

    Article  CAS  Google Scholar 

  25. Kalodimos, C.G. et al. Structure and flexibility adaptation in nonspecific and specific protein-DNA complexes. Science 305, 386–389 (2004).

    Article  CAS  Google Scholar 

  26. Keramisanou, D. et al. Disorder-order folding transitions underlie catalysis in the helicase motor of SecA. Nat. Struct. Mol. Biol. 13, 594–602 (2006).

    Article  CAS  Google Scholar 

  27. Mulder, F.A., Mittermaier, A., Hon, B., Dahlquist, F.W. & Kay, L.E. Studying excited states of proteins by NMR spectroscopy. Nat. Struct. Biol. 8, 932–935 (2001).

    Article  CAS  Google Scholar 

  28. Forman-Kay, J.D. The 'dynamics' in the thermodynamics of binding. Nat. Struct. Biol. 6, 1086–1087 (1999).

    Article  CAS  Google Scholar 

  29. Cavanagh, J. & Akke, M. May the driving force be with you–whatever it is. Nat. Struct. Biol. 7, 11–13 (2000).

    Article  CAS  Google Scholar 

  30. Zidek, L., Novotny, M.V. & Stone, M.J. Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nat. Struct. Biol. 6, 1118–1121 (1999).

    Article  CAS  Google Scholar 

  31. Stone, M.J. NMR relaxation studies of the role of conformational entropy in protein stability and ligand binding. Acc. Chem. Res. 34, 379–388 (2001).

    Article  CAS  Google Scholar 

  32. Igumenova, T.I., Frederick, K.K. & Wand, A.J. Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem. Rev. 106, 1672–1699 (2006).

    Article  CAS  Google Scholar 

  33. Hilser, V.J., Garcia-Moreno, E.B., Oas, T.G., Kapp, G. & Whitten, S.T. A statistical thermodynamic model of the protein ensemble. Chem. Rev. 106, 1545–1558 (2006).

    Article  CAS  Google Scholar 

  34. Gekko, K., Obu, N., Li, J. & Lee, J.C. A linear correlation between the energetics of allosteric communication and protein flexibility in the Escherichia coli cyclic AMP receptor protein revealed by mutation-induced changes in compressibility and amide hydrogen-deuterium exchange. Biochemistry 43, 3844–3852 (2004).

    Article  CAS  Google Scholar 

  35. Englander, J.J., Louie, G., McKinnie, R.E. & Englander, S.W. Energetic components of the allosteric machinery in hemoglobin measured by hydrogen exchange. J. Mol. Biol. 284, 1695–1706 (1998).

    Article  CAS  Google Scholar 

  36. Yang, D. & Kay, L.E. Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J. Mol. Biol. 263, 369–382 (1996).

    Article  CAS  Google Scholar 

  37. Bracken, C., Carr, P.A., Cavanagh, J. & Palmer, A.G., III Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: implications for the entropy of association with DNA. J. Mol. Biol. 285, 2133–2146 (1999).

    Article  CAS  Google Scholar 

  38. Gunasekaran, K., Ma, B. & Nussinov, R. Is allostery an intrinsic property of all dynamic proteins? Proteins 57, 433–443 (2004).

    Article  CAS  Google Scholar 

  39. Anderson, A.C., O'Neil, R.H., DeLano, W.L. & Stroud, R.M. The structural mechanism for half-the-sites reactivity in an enzyme, thymidylate synthase, involves a relay of changes between subunits. Biochemistry 38, 13829–13836 (1999).

    Article  CAS  Google Scholar 

  40. Leslie, A.G. & Wonacott, A.J. Structural evidence for ligand-induced sequential conformational changes in glyceraldehyde 3-phosphate dehydrogenase. J. Mol. Biol. 178, 743–772 (1984).

    Article  CAS  Google Scholar 

  41. Hampele, I.C. et al. Structure and function of the dihydropteroate synthase from Staphylococcus aureus. J. Mol. Biol. 268, 21–30 (1997).

    Article  CAS  Google Scholar 

  42. Lee, A.L. & Wand, A.J. Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 411, 501–504 (2001).

    Article  CAS  Google Scholar 

  43. Evenas, J. et al. Ligand-induced structural changes to maltodextrin-binding protein as studied by solution NMR spectroscopy. J. Mol. Biol. 309, 961–974 (2001).

    Article  CAS  Google Scholar 

  44. Korzhnev, D.M., Skrynnikov, N.R., Millet, O., Torchia, D.A. & Kay, L.E. An NMR experiment for the accurate measurement of heteronuclear spin-lock relaxation rates. J. Am. Chem. Soc. 124, 10743–10753 (2002).

    Article  CAS  Google Scholar 

  45. Farrow, N.A., Zhang, O., Szabo, A., Torchia, D.A. & Kay, L.E. Spectral density function mapping using 15N relaxation data exclusively. J. Biomol. NMR 6, 153–162 (1995).

    Article  CAS  Google Scholar 

  46. Lefevre, J.F., Dayie, K.T., Peng, J.W. & Wagner, G. Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions. Biochemistry 35, 2674–2686 (1996).

    Article  CAS  Google Scholar 

  47. Krizova, H., Zidek, L., Stone, M.J., Novotny, M.V. & Sklenar, V. Temperature-dependent spectral density analysis applied to monitoring backbone dynamics of major urinary protein-I complexed with the pheromone 2-sec-butyl-4,5-dihydrothiazole. J. Biomol. NMR 28, 369–384 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Loria (Yale) and P. Huskey (Rutgers) for providing us with scripts for the analysis of some of the relaxation data. This work was supported by US National Science Foundation grant MCB-0618259 to C.G.K. and by US National Institutes of Health grant GM41376 and a Howard Hughes Medical Institute investigatorship to R.H.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charalampos G Kalodimos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Molecular drawing of CAPN. (PDF 412 kb)

Supplementary Fig. 2

Classes of chemical shift behavior of CAPN during its sequential interaction with cAMP. (PDF 214 kb)

Supplementary Fig. 3

Relaxation rates of CAPN as a function of the ligation state. (PDF 350 kb)

Supplementary Fig. 4

Overlaid HSQC spectra of CAPN as a function of the ligation state. (PDF 347 kb)

Supplementary Figure 5

Rex values of cAMP1-CAPN at two cAMP concentrations. (PDF 305 kb)

Supplementary Figure 6

Changes in order parameters upon sequential cAMP binding. (PDF 305 kb)

Supplementary Discussion

Contribution to Rex from cAMP binding and dissociation is negligible. (PDF 303 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popovych, N., Sun, S., Ebright, R. et al. Dynamically driven protein allostery. Nat Struct Mol Biol 13, 831–838 (2006). https://doi.org/10.1038/nsmb1132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing