Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for the methylation site specificity of SET7/9

Abstract

Human SET7/9 is a protein lysine methyltransferase (PKMT) that methylates histone H3, the tumor suppressor p53 and the TBP-associated factor TAF10. To elucidate the determinants of its substrate specificity, we have solved the enzyme's structure bound to a TAF10 peptide and examined its ability to methylate histone H3, TAF10 and p53 substrates bearing either mutations or covalent modifications within their respective methylation sites. Collectively, our data reveal that SET7/9 recognizes a conserved K/R-S/T/A motif preceding the lysine substrate and has a propensity to bind aspartates and asparagines on the C-terminal side of the lysine target. We then used a sequence-based approach with this motif to identify novel substrates for this PKMT. Among the putative targets is TAF7, which is methylated at Lys5 by the enzyme in vitro. These results demonstrate the predictive value of the consensus motif in identifying novel substrates for SET7/9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of SET7/9 in complex with TAF10, p53 and histone H3 peptides.
Figure 2: Comparison of the SET7/9 methylation sites in histone H3, TAF10 and p53.
Figure 3: Identification of novel putative substrates of SET7/9.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Trievel, R.C. Structure and function of histone methyltransferases. Crit. Rev. Eukaryot. Gene Expr. 14, 147–170 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Kuzmichev, A., Jenuwein, T., Tempst, P. & Reinberg, D. Different ezh2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol. Cell 14, 183–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Sims, R.J. III, Nishioka, K & Reinberg, D Histone lysine methylation: a signature for chromatin function. Trends Genet. 19, 629–639 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Santos-Rosa, H. et al. Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. Mol. Cell 12, 1325–1332 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Sims, R.J. III et al. Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J. Biol. Chem. 31 published online October 2005 (1074/jbc.C500395200).

  6. Pray-Grant, M.G., Daniel, J.A., Schieltz, D., Yates, J.R. & Grant, P.A. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433, 434–438 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121, 859–872 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Nishioka, K. et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev. 16, 479–489 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zegerman, P., Canas, B., Pappin, D. & Kouzarides, T. Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. J. Biol. Chem. 277, 11621–11624 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, H. et al. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol. Cell 8, 1207–1217 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Dillon, S.C., Zhang, X., Trievel, R.C. & Cheng, X. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 6, 227 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Martens, J.H., Verlaan, M., Kalkhoven, E. & Zantema, A. Cascade of distinct histone modifications during collagenase gene activation. Mol. Cell. Biol. 23, 1808–1816 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chakrabarti, S.K., Francis, J., Ziesmann, S.M., Garmey, J.C. & Mirmira, R.G. Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic beta cells. J. Biol. Chem. 278, 23617–23623 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Wilson, J.R. et al. Crystal structure and functional analysis of the histone methyltransferase SET7/9. Cell 111, 105–115 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Jacobs, S.A. et al. The active site of the SET domain is constructed on a knot. Nat. Struct. Biol. 9, 833–838 (2002).

    CAS  PubMed  Google Scholar 

  16. Kwon, T. et al. Mechanism of histone lysine methyl transfer revealed by the structure of SET7/9-AdoMet. EMBO J. 22, 292–303 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xiao, B. et al. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 421, 652–656 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Chuikov, S. et al. Regulation of p53 activity through lysine methylation. Nature 432, 353–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Kouskouti, A., Scheer, E., Staub, A., Tora, L. & Talianidis, I. Gene-specific modulation of TAF10 function by SET9-mediated methylation. Mol. Cell 14, 175–182 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Tora, L. A unified nomenclature for TATA box binding protein (TBP)-associated factors (TAFs) involved in RNA polymerase II transcription. Genes Dev. 16, 673–675 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Schechter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162 (1967).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, X. et al. Structural basis for the product specificity of histone lysine methyltransferases. Mol. Cell 12, 177–185 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schurter, B.T. et al. Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry 40, 5747–5756 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Y. et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306, 279–283 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Cuthbert, G.L. et al. Histone deimination antagonizes arginine methylation. Cell 118, 545–553 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Dai, J., Sultan, S., Taylor, S.S. & Higgins, J.M. The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev. 19, 472–488 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Youmell, M., Park, S.J., Basu, S. & Price, B.D. Regulation of the p53 protein by protein kinase C alpha and protein kinase C zeta. Biochem. Biophys. Res. Commun. 245, 514–518 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, L. et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol. Cell. Biol. 19, 1202–1209 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fischle, W., Wang, Y. & Allis, C.D. Binary switches and modification cassettes in histone biology and beyond. Nature 425, 475–479 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Obenauer, J.C., Cantley, L.C. & Yaffe, M.B. Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 31, 3635–3641 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harris, M.A. et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32, D258–D261 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Hosack, D.A., Dennis, G. Jr ., Sherman, B.T., Lane, H.C. & Lempicki, R.A. Identifying biological themes within lists of genes with EASE. Genome Biol. 4, R70 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Matangkasombut, O., Auty, R. & Buratowski, S. Structure and function of the TFIID complex. Adv. Protein Chem. 67, 67–92 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Miller, T. et al. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc. Natl. Acad. Sci. USA 98, 12902–12907 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Briggs, S.D. et al. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 15, 3286–3295 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roguev, A. et al. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J. 20, 7137–7148 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bernstein, B.E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl. Acad. Sci. USA 99, 8695–8700 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nagy, P.L., Griesenbeck, J., Kornberg, R.D. & Cleary, M.L. A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc. Natl. Acad. Sci. USA 99, 90–94 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, K. et al. The Set1 methyltransferase opposes Ipl1 aurora kinase functions in chromosome segregation. Cell 122, 723–734 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sheffield, P., Garrard, S. & Derewenda, Z. Overcoming expression and purification problems of RhoGDI using a family of “parallel” expression vectors. Protein Expr. Purif. 15, 34–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Trievel, R.C., Beach, B.M., Dirk, L.M., Houtz, R.L. & Hurley, J.H. Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell 111, 91–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Luger, K., Rechsteiner, T.J. & Richmond, T.J. Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol. Biol. 119, 1–16 (1999).

    CAS  PubMed  Google Scholar 

  43. Messerschmidt, A. & Pflugrath, J.W. Crystal orientation and X-ray pattern prediction routines for area-detector diffractometer systems in macromolecular crystallography. J. Appl. Crystallogr. 20, 306–315 (1987).

    Article  CAS  Google Scholar 

  44. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  45. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  46. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  48. Collazo, E., Couture, J.F., Bulfer, S. & Trievel, R.C. A coupled fluorescent assay for histone methyltransferases. Anal. Biochem. 342, 86–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Couture, J.F., Collazo, E., Brunzelle, J.S. & Trievel, R.C. Structural and functional analysis of SET8, a histone H4 Lys-20 methyltransferase. Genes Dev. 19, 1455–1465 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank K. Battaile for assistance in X-ray data collection, B. Beach for her help in cloning and R. Houtz (University of Kentucky) for his gift of purified AdoMet. We wish to acknowledge R. Kwok, P. O'Brien and D. Peisach for reading the manuscript and providing useful comments. We also thank D. Bochar for his assistance with autoradiography and for reviewing the manuscript and A. Blais for his help with the program EASE. Use of the IMCA-CAT beamline 17-ID at the Advanced Photon Source was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with the Center for Advanced Radiation Sources at the University of Chicago. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. Use of the University of Michigan (UM) DNA Sequencing Core was supported by the US National Institutes of Health through the UM's Cancer Center Support Grant (5 P30 CA46592). This work used the UM Protein Structure Core of the Michigan Diabetes Research and Training Center funded by grant NIH5P60 DK20572 from the US National Institute of Diabetes & Digestive & Kidney Diseases. Finally, this research was supported in part by a Michigan Diabetes and Research Training Center Pilot Grant (F007819) to R.C.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond C Trievel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couture, JF., Collazo, E., Hauk, G. et al. Structural basis for the methylation site specificity of SET7/9. Nat Struct Mol Biol 13, 140–146 (2006). https://doi.org/10.1038/nsmb1045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1045

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing