Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The human SWI/SNF subunit Brm is a regulator of alternative splicing

Abstract

The SWI/SNF (mating-type switch/sucrose nonfermenting) complex involved in chromatin remodeling on promoters has also been detected on the coding region of genes. Here we show that SWI/SNF can function as a regulator of alternative splicing. We found that the catalytic subunit Brm favors inclusion of variant exons in the mRNA of several genes, including E-cadherin, BIM, cyclin D1 and CD44. Consistent with this, Brm associates with several components of the spliceosome and with Sam68, an ERK-activated enhancer of variant exon inclusion. Examination of the CD44 gene revealed that Brm induced accumulation of RNA polymerase II (RNAPII) with a modified CTD phosphorylation pattern on regions encoding variant exons. Altogether, our data suggest that on genes regulated by SWI/SNF, Brm contributes to the crosstalk between transcription and RNA processing by decreasing RNAPII elongation rate and facilitating recruitment of the splicing machinery to variant exons with suboptimal splice sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Brm favors inclusion of alternative exons.
Figure 2: In vivo interaction of Brm with U1 and U5 but not U3 snRNAs.
Figure 3: Brm induces exon inclusion in cooperation with Sam68.
Figure 4: Brm and RNAPII on the coding region of the CD44 gene.
Figure 5: Modified CTD phosphorylation pattern of the RNAPII associated with Brm inside the variant region of the CD44 gene.
Figure 6: Model for the regulation of alternative splicing by Brm on the CD44 gene.

Similar content being viewed by others

References

  1. Sharp, P.A. The discovery of split genes and RNA splicing. Trends Biochem. Sci. 30, 279–281 (2005).

    Article  CAS  Google Scholar 

  2. Matlin, A.J., Clark, F. & Smith, C.W. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386–398 (2005).

    Article  CAS  Google Scholar 

  3. Shin, C. & Manley, J.L. Cell signalling and the control of pre-mRNA splicing. Nat. Rev. Mol. Cell Biol. 5, 727–738 (2004).

    Article  CAS  Google Scholar 

  4. Konig, H., Ponta, H. & Herrlich, P. Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J. 17, 2904–2913 (1998).

    Article  CAS  Google Scholar 

  5. Matter, N., Herrlich, P. & Konig, H. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420, 691–695 (2002).

    Article  CAS  Google Scholar 

  6. Lukong, K.E. & Richard, S. Sam68, the KH domain-containing superSTAR. Biochim. Biophys. Acta 1653, 73–86 (2003).

    CAS  PubMed  Google Scholar 

  7. Stoss, O. et al. p59(fyn)-mediated phosphorylation regulates the activity of the tissue-specific splicing factor rSLM-1. Mol. Cell. Neurosci. 27, 8–21 (2004).

    Article  CAS  Google Scholar 

  8. Grossman, J.S. et al. The use of antibodies to the polypyrimidine tract binding protein (PTB) to analyze the protein components that assemble on alternatively spliced pre-mRNAs that use distant branch points. RNA 4, 613–625 (1998).

    Article  CAS  Google Scholar 

  9. Kornblihtt, A.R. Promoter usage and alternative splicing. Curr. Opin. Cell Biol. 17, 262–268 (2005).

    Article  CAS  Google Scholar 

  10. Auboeuf, D. et al. Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes. Proc. Natl. Acad. Sci. USA 101, 2270–2274 (2004).

    Article  CAS  Google Scholar 

  11. Auboeuf, D., Honig, A., Berget, S.M. & O'Malley, B.W. Coordinate regulation of transcription and splicing by steroid receptor coregulators. Science 298, 416–419 (2002).

    Article  CAS  Google Scholar 

  12. Masuhiro, Y. et al. Splicing potentiation by growth factor signals via estrogen receptor phosphorylation. Proc. Natl. Acad. Sci. USA 102, 8126–8131 (2005).

    Article  CAS  Google Scholar 

  13. Rosonina, E., Bakowski, M.A., McCracken, S. & Blencowe, B.J. Transcriptional activators control splicing and 3′-end cleavage levels. J. Biol. Chem. 278, 43034–43040 (2003).

    Article  CAS  Google Scholar 

  14. Martens, J.A. & Winston, F. Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr. Opin. Genet. Dev. 13, 136–142 (2003).

    Article  CAS  Google Scholar 

  15. Reisman, D.N. et al. Concomitant down-regulation of BRM and BRG1 in human tumor cell lines: differential effects on RB-mediated growth arrest vs CD44 expression. Oncogene 21, 1196–1207 (2002).

    Article  CAS  Google Scholar 

  16. Kadam, S. & Emerson, B.M. Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol. Cell 11, 377–389 (2003).

    Article  CAS  Google Scholar 

  17. Marshall, T.W., Link, K.A., Petre-Draviam, C.E. & Knudsen, K.E. Differential requirement of SWI/SNF for androgen receptor activity. J. Biol. Chem. 278, 30605–30613 (2003).

    Article  CAS  Google Scholar 

  18. Sullivan, E.K., Weirich, C.S., Guyon, J.R., Sif, S. & Kingston, R.E. Transcriptional activation domains of human heat shock factor 1 recruit human SWI/SNF. Mol. Cell. Biol. 21, 5826–5837 (2001).

    Article  CAS  Google Scholar 

  19. Corey, L.L., Weirich, C.S., Benjamin, I.J. & Kingston, R.E. Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation. Genes Dev. 17, 1392–1401 (2003).

    Article  CAS  Google Scholar 

  20. Wilson, C.J. et al. RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 84, 235–244 (1996).

    Article  CAS  Google Scholar 

  21. Neish, A.S., Anderson, S.F., Schlegel, B.P., Wei, W. & Parvin, J.D. Factors associated with the mammalian RNA polymerase II holoenzyme. Nucleic Acids Res. 26, 847–853 (1998).

    Article  CAS  Google Scholar 

  22. Underhill, C., Qutob, M.S., Yee, S.P. & Torchia, J. A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J. Biol. Chem. 275, 40463–40470 (2000).

    Article  CAS  Google Scholar 

  23. Dellaire, G. et al. Mammalian PRP4 kinase copurifies and interacts with components of both the U5 snRNP and the N-CoR deacetylase complexes. Mol. Cell. Biol. 22, 5141–5156 (2002).

    Article  CAS  Google Scholar 

  24. Banine, F. et al. SWI/SNF chromatin-remodeling factors induce changes in DNA methylation to promote transcriptional activation. Cancer Res. 65, 3542–3547 (2005).

    Article  CAS  Google Scholar 

  25. Fukudome, Y., Yanagihara, K., Takeichi, M., Ito, F. & Shibamoto, S. Characterization of a mutant E-cadherin protein encoded by a mutant gene frequently seen in diffuse-type human gastric carcinoma. Int. J. Cancer 88, 579–583 (2000).

    Article  CAS  Google Scholar 

  26. U, M., Miyashita, T., Shikama, Y., Tadokoro, K. & Yamada, M. Molecular cloning and characterization of six novel isoforms of human Bim, a member of the proapoptotic Bcl-2 family. FEBS Lett. 509, 135–141 (2001).

    Article  CAS  Google Scholar 

  27. Lu, F., Gladden, A.B. & Diehl, J.A. An alternatively spliced cyclin D1 isoform, cyclin D1b, is a nuclear oncogene. Cancer Res. 63, 7056–7061 (2003).

    CAS  PubMed  Google Scholar 

  28. Goodison, S., Urquidi, V. & Tarin, D. CD44 cell adhesion molecules. Mol. Pathol. 52, 189–196 (1999).

    Article  CAS  Google Scholar 

  29. Reyes, J.C. et al. Altered control of cellular proliferation in the absence of mammalian brahma (SNF2α). EMBO J. 17, 6979–6991 (1998).

    Article  CAS  Google Scholar 

  30. Bourachot, B., Yaniv, M. & Muchardt, C. The activity of mammalian brm/SNF2α is dependent on a high-mobility- group protein I/Y-like DNA binding domain. Mol. Cell. Biol. 19, 3931–3939 (1999).

    Article  CAS  Google Scholar 

  31. Kouskouti, A. & Talianidis, I. Histone modifications defining active genes persist after transcriptional and mitotic inactivation. EMBO J. 24, 347–357 (2005).

    Article  CAS  Google Scholar 

  32. Jones, J.C. et al. C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats. J. Biol. Chem. 279, 24957–24964 (2004).

    Article  CAS  Google Scholar 

  33. de la Mata, M. et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12, 525–532 (2003).

    Article  CAS  Google Scholar 

  34. Howe, K.J., Kane, C.M. & Ares, M., Jr. Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA 9, 993–1006 (2003).

    Article  CAS  Google Scholar 

  35. Roberts, G.C., Gooding, C., Mak, H.Y., Proudfoot, N.J. & Smith, C.W. Co-transcriptional commitment to alternative splice site selection. Nucleic Acids Res. 26, 5568–5572 (1998).

    Article  CAS  Google Scholar 

  36. Boehm, A.K., Saunders, A., Werner, J. & Lis, J.T. Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Mol. Cell. Biol. 23, 7628–7637 (2003).

    Article  CAS  Google Scholar 

  37. Morris, D.P., Michelotti, G.A. & Schwinn, D.A. Evidence that phosphorylation of the RNA polymerase II carboxyl-terminal repeats is similar in yeast and humans. J. Biol. Chem. 280, 31368–31377 (2005).

    Article  CAS  Google Scholar 

  38. Cheng, C. & Sharp, P.A. RNA polymerase II accumulation in the promoter-proximal region of the dihydrofolate reductase and γ-actin genes. Mol. Cell. Biol. 23, 1961–1967 (2003).

    Article  CAS  Google Scholar 

  39. Cho, H. et al. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol. Cell. Biol. 18, 5355–5363 (1998).

    Article  CAS  Google Scholar 

  40. Cereghini, S. & Yaniv, M. Assembly of transfected DNA into chromatin: structural changes in the origin-promoter-enhancer region upon replication. EMBO J. 3, 1243–1253 (1984).

    Article  CAS  Google Scholar 

  41. Soutoglou, E. & Talianidis, I. Coordination of PIC assembly and chromatin remodeling during differentiation-induced gene activation. Science 295, 1901–1904 (2002).

    Article  CAS  Google Scholar 

  42. Agalioti, T., Chen, G. & Thanos, D. Deciphering the transcriptional histone acetylation code for a human gene. Cell 111, 381–392 (2002).

    Article  CAS  Google Scholar 

  43. Muchardt, C., Reyes, J.C., Bourachot, B., Leguoy, E. & Yaniv, M. The hbrm and BRG-1 proteins, components of the human SNF/SWI complex, are phosphorylated and excluded from the condensed chromosomes during mitosis. EMBO J. 15, 3394–3402 (1996).

    Article  CAS  Google Scholar 

  44. Sims, R.J., III., Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18, 2437–2468 (2004).

    Article  CAS  Google Scholar 

  45. Trautinger, B.W., Jaktaji, R.P., Rusakova, E. & Lloyd, R.G. RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. Mol. Cell 19, 247–258 (2005).

    Article  CAS  Google Scholar 

  46. Bourachot, B., Yaniv, M. & Muchardt, C. Growth inhibition by the mammalian SWI-SNF subunit Brm is regulated by acetylation. EMBO J. 22, 6505–6515 (2003).

    Article  CAS  Google Scholar 

  47. Batsché, E., Moschopoulos, P., Desroches, J., Bilodeau, S. & Drouin, J. Retinoblastoma and the related pocket protein p107 act as coactivators of NeuroD1 to enhance gene transcription. J. Biol. Chem. 280, 16088–16095 (2005).

    Article  Google Scholar 

  48. Muchardt, C., Bourachot, B., Reyes, J.C. & Yaniv, M. ras transformation is associated with decreased expression of the brm/SNF2α ATPase from the mammalian SWI-SNF complex. EMBO J. 17, 223–231 (1998).

    Article  CAS  Google Scholar 

  49. Muchardt, C., Sardet, C., Bourachot, B., Onufryk, C. & Yaniv, M. A human protein with homology to Saccharomyces cerevisiae SNF5 interacts with the potential helicase hbrm. Nucleic Acids Res. 23, 1127–1132 (1995).

    Article  CAS  Google Scholar 

  50. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 2002–2007 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Auboeuf, D. Bentley, N. Matter, H. König and B. O'Malley for the gift of plasmids and J. Seeler and J. Weitzman for critical reading of the manuscript. E.B. received a fellowship from the Ligue Nationale Contre le Cancer. The experimental work was supported by grants from the Human Frontier Science Program and Association pour la Recherche sur le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Muchardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Efficiencies of the siRNA knockdowns. (PDF 344 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batsché, E., Yaniv, M. & Muchardt, C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol 13, 22–29 (2006). https://doi.org/10.1038/nsmb1030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1030

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing