Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Katanin spiral and ring structures shed light on power stroke for microtubule severing

Abstract

Microtubule-severing enzymes katanin, spastin and fidgetin are AAA ATPases important for the biogenesis and maintenance of complex microtubule arrays in axons, spindles and cilia. Because of a lack of known 3D structures for these enzymes, their mechanism of action has remained poorly understood. Here we report the X-ray crystal structure of the monomeric AAA katanin module from Caenorhabditis elegans and cryo-EM reconstructions of the hexamer in two conformations. The structures reveal an unexpected asymmetric arrangement of the AAA domains mediated by structural elements unique to microtubule-severing enzymes and critical for their function. The reconstructions show that katanin cycles between open spiral and closed ring conformations, depending on the ATP occupancy of a gating protomer that tenses or relaxes interprotomer interfaces. Cycling of the hexamer between these conformations would provide the power stroke for microtubule severing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture of monomeric and assembled katanin from X-ray diffraction, solution SAXS and cryo-EM structures.
Figure 2: Cryo-EM maps and 3D models for the katanin hexamer in the spiral conformation.
Figure 3: Cryo-EM maps and 3D models for the katanin hexamer in the ring conformation.
Figure 4: Different nucleotide occupancies in the spiral and ring conformations of the katanin hexamer.
Figure 5: Protomer-protomer interface rearrangements between the spiral and ring conformations: transition between tense and relaxed states of the P1 gating protomer.
Figure 6: Pore loop displacement of the gating protomer suggests power stroke for microtubule severing.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

Referenced accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Roll-Mecak, A. & McNally, F.J. Microtubule-severing enzymes. Curr. Opin. Cell Biol. 22, 96–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Gittes, F., Mickey, B., Nettleton, J. & Howard, J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Ahmad, F.J., Yu, W., McNally, F.J. & Baas, P.W. An essential role for katanin in severing microtubules in the neuron. J. Cell Biol. 145, 305–315 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu, W. et al. The microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches. Mol. Biol. Cell 19, 1485–1498 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, Q., Fishel, E., Bertroche, T. & Dixit, R. Microtubule severing at crossover sites by katanin generates ordered cortical microtubule arrays in Arabidopsis. Curr. Biol. 23, 2191–2195 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Lindeboom, J.J. et al. A mechanism for reorientation of cortical microtubule arrays driven by microtubule severing. Science 342, 1245533 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. McNally, K., Audhya, A., Oegema, K. & McNally, F.J. Katanin controls mitotic and meiotic spindle length. J. Cell Biol. 175, 881–891 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cummings, C.M., Bentley, C.A., Perdue, S.A., Baas, P.W. & Singer, J.D. The Cul3/Klhdc5 E3 ligase regulates p60/katanin and is required for normal mitosis in mammalian cells. J. Biol. Chem. 284, 11663–11675 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Loughlin, R., Wilbur, J.D., McNally, F.J., Nédélec, F.J. & Heald, R. Katanin contributes to interspecies spindle length scaling in Xenopus. Cell 147, 1397–1407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McNally, K. et al. Katanin maintains meiotic metaphase chromosome alignment and spindle structure in vivo and has multiple effects on microtubules in vitro. Mol. Biol. Cell 25, 1037–1049 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Srayko, M., O'toole, E.T., Hyman, A.A. & Müller-Reichert, T. Katanin disrupts the microtubule lattice and increases polymer number in C. elegans meiosis. Curr. Biol. 16, 1944–1949 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, D., Rogers, G.C., Buster, D.W. & Sharp, D.J. Three microtubule severing enzymes contribute to the “Pacman-flux” machinery that moves chromosomes. J. Cell Biol. 177, 231–242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sharma, N. et al. Katanin regulates dynamics of microtubules and biogenesis of motile cilia. J. Cell Biol. 178, 1065–1079 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu, W.F. et al. Katanin p80 regulates human cortical development by limiting centriole and cilia number. Neuron 84, 1240–1257 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mishra-Gorur, K. et al. Mutations in KATNB1 cause complex cerebral malformations by disrupting asymmetrically dividing neural progenitors. Neuron 84, 1226–1239 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yigit, G. et al. A syndrome of microcephaly, short stature, polysyndactyly, and dental anomalies caused by a homozygous KATNB1 mutation. Am. J. Med. Genet. A. 170, 728–733 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Vale, R.D. Severing of stable microtubules by a mitotically activated protein in Xenopus egg extracts. Cell 64, 827–839 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. McNally, F.J. & Vale, R.D. Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell 75, 419–429 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Hartman, J.J. et al. Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell 93, 277–287 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. McNally, F.J., Okawa, K., Iwamatsu, A. & Vale, R.D. Katanin, the microtubule-severing ATPase, is concentrated at centrosomes. J. Cell Sci. 109, 561–567 (1996).

    CAS  PubMed  Google Scholar 

  21. Joly, N., Martino, L., Gigant, E., Dumont, J. & Pintard, L. Microtubule-severing activity of AAA+ ATPase Katanin is essential for female meiotic spindle assembly. Development 143, 3604–3614 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Hartman, J.J. & Vale, R.D. Microtubule disassembly by ATP-dependent oligomerization of the AAA enzyme katanin. Science 286, 782–785 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Roll-Mecak, A. & Vale, R.D. Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 451, 363–367 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scott, A. et al. Structural and mechanistic studies of VPS4 proteins. EMBO J. 24, 3658–3669 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taylor, J.L., White, S.R., Lauring, B. & Kull, F.J. Crystal structure of the human spastin AAA domain. J. Struct. Biol. 179, 133–137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johjima, A. et al. Microtubule severing by katanin p60 AAA+ ATPase requires the C-terminal acidic tails of both α- and β-tubulins and basic amino acid residues in the AAA+ ring pore. J. Biol. Chem. 290, 11762–11770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Caillat, C. et al. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly. Nat. Commun. 6, 8781 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Lenzen, C.U., Steinmann, D., Whiteheart, S.W. & Weis, W.I. Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell 94, 525–536 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Glynn, S.E., Martin, A., Nager, A.R., Baker, T.A. & Sauer, R.T. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139, 744–756 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mains, P.E., Kemphues, K.J., Sprunger, S.A., Sulston, I.A. & Wood, W.B. Mutations affecting the meiotic and mitotic divisions of the early Caenorhabditis elegans embryo. Genetics 126, 593–605 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Clark-Maguire, S. & Mains, P.E. mei-1, a gene required for meiotic spindle formation in Caenorhabditis elegans, is a member of a family of ATPases. Genetics 136, 533–546 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wendler, P., Ciniawsky, S., Kock, M. & Kube, S. Structure and function of the AAA+ nucleotide binding pocket. Biochim. Biophys. Acta 1823, 2–14 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Fonknechten, N. et al. Spectrum of SPG4 mutations in autosomal dominant spastic paraplegia. Hum. Mol. Genet. 9, 637–644 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Hanson, P.I. & Whiteheart, S.W. AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 6, 519–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. White, S.R., Evans, K.J., Lary, J., Cole, J.L. & Lauring, B. Recognition of C-terminal amino acids in tubulin by pore loops in Spastin is important for microtubule severing. J. Cell Biol. 176, 995–1005 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roll-Mecak, A. & Vale, R.D. The Drosophila homologue of the hereditary spastic paraplegia protein, spastin, severs and disassembles microtubules. Curr. Biol. 15, 650–655 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Valenstein, M.L. & Roll-Mecak, A. Graded control of microtubule severing by tubulin glutamylation. Cell 164, 911–921 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bailey, M.E., Sackett, D.L. & Ross, J.L. Katanin severing and binding microtubules are inhibited by tubulin carboxy tails. Biophys. J. 109, 2546–2561 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Su, M. et al. Mechanism of Vps4 hexamer function revealed by cryo-EM. Sci. Adv. 3, e1700325 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Monroe, N., Han, H., Shen, P.S., Sundquist, W.I. & Hill, C.P. Structural basis of protein translocation by the Vps4-Vta1 AAA ATPase. eLife 6, e24487 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Whitehead, E., Heald, R. & Wilbur, J.D. N-terminal phosphorylation of p60 katanin directly regulates microtubule severing. J. Mol. Biol. 425, 214–221 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Iwaya, N. et al. A common substrate recognition mode conserved between katanin p60 and VPS4 governs microtubule severing and membrane skeleton reorganization. J. Biol. Chem. 285, 16822–16829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Olivares, A.O., Nager, A.R., Iosefson, O., Sauer, R.T. & Baker, T.A. Mechanochemical basis of protein degradation by a double-ring AAA+ machine. Nat. Struct. Mol. Biol. 21, 871–875 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, B., Stjepanovic, G., Shen, Q., Martin, A. & Hurley, J.H. Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation. Nat. Struct. Mol. Biol. 22, 492–498 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao, M. et al. Mechanistic insights into the recycling machine of the SNARE complex. Nature 518, 61–67 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yokom, A.L. et al. Spiral architecture of the Hsp104 disaggregase reveals the basis for polypeptide translocation. Nat. Struct. Mol. Biol. 23, 830–837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ripstein, Z.A., Huang, R., Augustyniak, R., Kay, L.E. & Rubinstein, J.L. Structure of a AAA+ unfoldase in the process of unfolding substrate. eLife 6, e25754 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lander, G.C. et al. Complete subunit architecture of the proteasome regulatory particle. Nature 482, 186–191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wehmer, M. et al. Structural insights into the functional cycle of the ATPase module of the 26S proteasome. Proc. Natl. Acad. Sci. USA 114, 1305–1310 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Enemark, E.J. & Joshua-Tor, L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442, 270–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Thomsen, N.D. & Berger, J.M. Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell 139, 523–534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thomsen, N.D., Lawson, M.R., Witkowsky, L.B., Qu, S. & Berger, J.M. Molecular mechanisms of substrate-controlled ring dynamics and substepping in a nucleic acid-dependent hexameric motor. Proc. Natl. Acad. Sci. USA 113, E7691–E7700 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Banerjee, S. et al. 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351, 871–875 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Doyle, S.M., Hoskins, J.R. & Wickner, S. DnaK chaperone-dependent disaggregation by caseinolytic peptidase B (ClpB) mutants reveals functional overlap in the N-terminal domain and nucleotide-binding domain-1 pore tyrosine. J. Biol. Chem. 287, 28470–28479 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. DeSantis, M.E. et al. Operational plasticity enables hsp104 to disaggregate diverse amyloid and nonamyloid clients. Cell 151, 778–793 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Otwinowski, Z. & Minor, W. [20] Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Glatter, V.O. & Kratsky, O. Small Angle X-ray Scattering (Academic Press, London, 1982).

  63. Mylonas, E. & Svergun, D.I. Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering. J. Appl. Crystallogr. 40, s245–s249 (2007).

    Article  CAS  Google Scholar 

  64. Svergun, D. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495–503 (1992).

    Article  CAS  Google Scholar 

  65. Rambo, R.P. & Tainer, J.A. Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496, 477–481 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Svergun, D.I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Volkov, V.V. & Svergun, D.I. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 36, 860–864 (2003).

    Article  CAS  Google Scholar 

  68. Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife 4, e06980 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Scheres, S.H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grigorieff, N. FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol. 157, 117–125 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Grigorieff, N. Frealign: an exploratory tool for single-particle cryo-EM. Methods Enzymol. 579, 191–226 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mastronarde, D.N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  74. Chua, E.Y. et al. 3.9 Å structure of the nucleosome core particle determined by phase-plate cryo-EM. Nucleic Acids Res. 44, 8013–8019 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Heymann, J.B. Bsoft: image and molecular processing in electron microscopy. J. Struct. Biol. 133, 156–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Wriggers, W., Milligan, R.A. & McCammon, J.A. Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125, 185–195 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Trabuco, L.G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ziółkowska, N.E. & Roll-Mecak, A. In vitro microtubule severing assays. Methods Mol. Biol. 1046, 323–334 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to N. Grigorieff for initial advice and access to the Krios for collection of one high-resolution data set, R. Diaz-Avalos for data collection advice, J. Hinshaw and H. Wang for TF20 access and F. McNally (University of California, Davis) for a katanin expression plasmid. X-ray diffraction data were collected at beamline 502 of the Advanced Light Source, which is a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231. SAXS was performed at Beamline 12ID-B of the Advanced Photon Source, which is a US DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. A.R.-M. is supported by the intramural programs of NINDS and NHLBI.

Author information

Authors and Affiliations

Authors

Contributions

E.Z. prepared grids, collected and processed EM data with input from A.R.-M. The high-resolution data set was collected at the Janelia Research Campus (Howard Hughes Medical Institute). All EM data were processed on the Biowulf cluster at the National Institutes of Health. A.R.-M. and E.Z. built and refined models. A.S. purified proteins, obtained crystals, collected X-ray diffraction and SAXS data and performed ATP-binding and ATP-hydrolysis assays. G.P. performed and interpreted AUC. E.W. performed in vitro severing assays. X.Z. collected and processed SAXS data. A.R.-M. refined X-ray structure. A.R.-M. and E.Z. wrote manuscript. All authors reviewed the manuscript. A.R.-M. conceived project and supervised research.

Corresponding author

Correspondence to Antonina Roll-Mecak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Analytical centrifugation and solution SAXS analyses of C. elegans p60 katanin.

(a)-(c) AUC experimental distribution curves for wild-type katanin (WT) and a Walker B mutant (Glu293Gln) at various concentrations, in the absence or presence of ATP. (d) Agreement between the solution SAXS data (open circle for full-length (FL), open square for ΔMIT katanin) and the DAMMIF models (red solid line for full-length and blue for ΔMIT katanin). (e) Guinier plots for the solution SAXS data in (d). The linear ln[I(q)] versus q2 plot indicates good sample quality. (f) Views of an overlay of a representative model for full-length katanin (green) and the average model obtained using DAMFILT (blue). (g) Top and side views of twenty superimposed bead models of ΔMIT katanin generated from the solution SAXS data. (h) Views of an overlay of a representative model for ΔMIT katanin (gray) and the average model obtained using DAMFILT (magenta). Approximate dimensions shown.

Supplementary Figure 2 Sequence alignment of katanin p60 homologues.

Sequence numbering corresponds to C. elegans katanin p60 (GenBank Accession Code: NP_492257). The N-terminal boundary of the fishhook linker element is approximate and based on the cryo-EM map. α-helices, spirals; β-strands, arrows; random coils, lines, are colored as in Fig. 1e; dashed lines denote unresolved sequences in the X-ray structure. Sequence conservation colored on a gradient from red (100% identity) to yellow (30% identity). Pore loops 1 and 2, ATP interacting elements (Walker A and B) are highlighted by boxes. Black and red symbols denote inactivating mutations in katanin (Clark-Maguire, S., et al., Genetics, 136, 1994, Pintard, L., et al., Nature, 425, 2003, Clandinin, T. R., et al., Genetics, 134, 1993, McNally, K. P., et al., Molecular biology of the cell, 22, 2011, McNally, K., et al., The Journal of Cell Biology, 175, 2006, McNally, K. P., et al., Journal of Cell Science, 113, 2000, Loughlin, R., et al., Cell, 147, 2011, Whitehead, E., et al., J Mol Biol, 425, 2013) and spastin, respectively (Roll-Mecak, A., et al., Nature, 451, 2008) from previous studies; open circles indicate katanin mutations tested in this study. Alignment generated with Muscle using default settings in Jalview (Waterhouse, A. M., et al., Bioinformatics, 25, 2009).

Supplementary Figure 3 Cryo-EM reconstructions of katanin p60.

(a) Cryo-EM micrograph showing katanin p60 particle distribution in ice and a power spectrum of the micrograph (inset). (b) Selected reference-free 2D class averages. (c) Gold-standard FSC curves for the unmasked and masked cryo-EM reconstructions. (d) Different views of the final sharpened cryo-EM map of katanin p60 in the spiral conformation colored according to the local resolution determined using blocres in Bsoft (Heymann, J. B., J Struct Biol, 133, 2001). (e) Euler distribution plots for the particles contributing to the final reconstruction of the spiral conformation. Red, views containing the highest number of particles. (f) Different views of the final sharpened cryo-EM map of katanin p60 in the ring conformation colored as in (d). (g) Euler distribution plots for the particles contributing to the final reconstruction of the ring conformation.

Supplementary Figure 4 Workflow for classification and refinement for cryo-EM data.

Supplementary Figure 5 Comparison of the cryo-EM katanin hexamer structure and hexamers generated through crystallographic symmetry from monomeric apo structures.

(a) Cryo-EM structure of the katanin hexamer in the spiral conformation (this work); (b) P65 crystal packing of the katanin monomer X-ray crystal structure (this work); (c) P65 crystal packing of D. melanogaster spastin monomer (PDB ID: 3B9P (Roll-Mecak, A., et al., Nature, 451, 2008)); (d) P65 crystal packing of H. sapiens spastin monomer (PDB ID: 3VFD (Taylor, J. L., et al., J Struct Biol, 179, 2012)). Atomic models are colored as in Fig. 2. The models were aligned to each other using protomer P4.

Supplementary Figure 6 Inter-protomer interfaces in the katanin hexamer.

(a) Inter-protomer contacts in the spiral conformation mediated by the α1-α2 and α5-β4 loops, disordered in the X-ray crystal structure of the monomer. P4-P5 interface shown. Cryo-EM map and atomic model colored as in Fig. 2. (b) Close-up view of inter-protomer interactions mediated by helix α12. P4-P5 interface shown. Cryo-EM density presented as transparent gray isosurface. Atomic model is color-coded as in Fig. 1e. The invariant Phe469 and Gly470 highlighted in blue. (c) Side-chains for the arginine finger residues Arg351 and Arg352 at the P2-P3 interface in the cryo-EM map of katanin p60 in the spiral conformation.

Supplementary Figure 7 Different nucleotide occupancies in the spiral and ring conformations of the katanin hexamer.

(a-b) Molecular model with cryo-EM density presented as a transparent gray isosurface showing bound nucleotide at the NBD-HBD junction (Left) and enlarged views of the nucleotide-binding pocket (Right) with the difference map as a transparent gray isosurface of segmented P1 through P6 in the spiral conformation (a) and the ring conformation (b) colored as in Fig. 2. Nucleotide is absent in P1 of the ring conformation, highlighted by the dotted-line oval. Difference maps were calculated between the experimental cryo-EM map and a katanin model-based map without nucleotide in the active site (methods). (c-d) Difference maps corresponding to the gamma-phosphate of ATP are shown as transparent gray isosurfaces for protomers P1 through P6 in the spiral conformation (c) and P2 through P6 in the ring conformation (d). Difference maps were calculated between the experimental cryo-EM map and the katanin model-based map with ADP modeled in the active site (Online methods).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 1789 kb)

Life Sciences Reporting Summary (PDF 129 kb)

Conformational changes between the spiral and ring conformations.

Movie illustrating the katanin structure and changes between the spiral and ring conformations. Movie generated with UCSF Chimera using the Morph Conformation Subroutine. (MOV 62141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zehr, E., Szyk, A., Piszczek, G. et al. Katanin spiral and ring structures shed light on power stroke for microtubule severing. Nat Struct Mol Biol 24, 717–725 (2017). https://doi.org/10.1038/nsmb.3448

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3448

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing