Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

DNA–RNA hybrids: the risks of DNA breakage during transcription

Abstract

Although R loops can occur at different genomic locations, the factors that determine their formation and frequency remain unclear. Emerging evidence indicates that DNA breaks stimulate DNA–RNA hybrid formation. Here, we discuss the possibility that formation of hybrids may be an inevitable risk of DNA breaks that occur within actively transcribed regions. While such hybrids must be removed to permit repair, their potential role as repair intermediates remains to be established.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiple protein factors act at three distinct steps to prevent harmful DNA–RNA hybrid accumulation.
Figure 2: Structural features that stimulate DNA–RNA hybrid formation along transcribed DNA.
Figure 3: Potential impact of DNA–RNA hybrids on DNA double-strand break repair.

Similar content being viewed by others

References

  1. Thomas, M., White, R.L. & Davis, R.W. Hybridization of RNA to double-stranded DNA: formation of R-loops. Proc. Natl. Acad. Sci. USA 73, 2294–2298 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aguilera, A. & García-Muse, T. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46, 115–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Yu, K., Chedin, F., Hsieh, C.L., Wilson, T.E. & Lieber, M.R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 4, 442–451 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711–721 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Li, X. & Manley, J.L. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Paulsen, R.D. et al. A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol. Cell 35, 228–239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Castellano-Pozo, M., García-Muse, T. & Aguilera, A. R-loops cause replication impairment and genome instability during meiosis. EMBO Rep. 13, 923–929 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wahba, L., Amon, J.D., Koshland, D. & Vuica-Ross, M. RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Mol. Cell 44, 978–988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stirling, P.C. et al. R-loop-mediated genome instability in mRNA cleavage and polyadenylation mutants. Genes Dev. 26, 163–175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sridhara, S.C. et al. Transcription dynamics prevent RNA-mediated genomic instability through SRPK2-dependent DDX23 phosphorylation. Cell Rep. 18, 334–343 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Skourti-Stathaki, K. & Proudfoot, N.J. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev. 28, 1384–1396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sollier, J. & Cimprich, K.A. Breaking bad: R-loops and genome integrity. Trends Cell Biol. 25, 514–522 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Santos-Pereira, J.M. & Aguilera, A. R loops: new modulators of genome dynamics and function. Nat. Rev. Genet. 16, 583–597 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Huang, F.T. et al. Sequence dependence of chromosomal R-loops at the immunoglobulin heavy-chain Smu class switch region. Mol. Cell. Biol. 27, 5921–5932 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chan, Y.A. et al. Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip. PLoS Genet. 10, e1004288 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. El Hage, A., Webb, S., Kerr, A. & Tollervey, D. Genome-wide distribution of RNA-DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria. PLoS Genet. 10, e1004716 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ginno, P.A., Lott, P.L., Christensen, H.C., Korf, I. & Chédin, F. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol. Cell 45, 814–825 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wahba, L., Costantino, L., Tan, F.J., Zimmer, A. & Koshland, D. S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev. 30, 1327–1338 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nadel, J. et al. RNA:DNA hybrids in the human genome have distinctive nucleotide characteristics, chromatin composition, and transcriptional relationships. Epigenetics Chromatin 8, 46 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Balk, B., Dees, M., Bender, K. & Luke, B. The differential processing of telomeres in response to increased telomeric transcription and RNA-DNA hybrid accumulation. RNA Biol. 11, 95–100 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Duquette, M.L., Handa, P., Vincent, J.A., Taylor, A.F. & Maizels, N. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev. 18, 1618–1629 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Wellinger, R.E., Prado, F. & Aguilera, A. Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Mol. Cell. Biol. 26, 3327–3334 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gan, W. et al. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev. 25, 2041–2056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tuduri, S. et al. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat. Cell Biol. 11, 1315–1324 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Helmrich, A., Ballarino, M. & Tora, L. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 44, 966–977 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Madireddy, A. et al. FANCD2 facilitates replication through common fragile sites. Mol. Cell 64, 388–404 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Merrikh, H., Zhang, Y., Grossman, A.D. & Wang, J.D. Replication-transcription conflicts in bacteria. Nat. Rev. Microbiol. 10, 449–458 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schwab, R.A. et al. The Fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol. Cell 60, 351–361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. García-Muse, T. & Aguilera, A. Transcription-replication conflicts: how they occur and how they are resolved. Nat. Rev. Mol. Cell Biol. 17, 553–563 (2016).

    Article  PubMed  Google Scholar 

  32. Bhatia, V. et al. BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature 511, 362–365 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Hatchi, E. et al. BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol. Cell 57, 636–647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. García-Rubio, M.L. et al. The Fanconi anemia pathway protects genome integrity from R-loops. PLoS Genet. 11, e1005674 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Skourti-Stathaki, K., Kamieniarz-Gdula, K. & Proudfoot, N.J. R-loops induce repressive chromatin marks over mammalian gene terminators. Nature 516, 436–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Castel, S.E. et al. Dicer promotes transcription termination at sites of replication stress to maintain genome stability. Cell 159, 572–583 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Groh, M. & Gromak, N. Out of balance: R-loops in human disease. PLoS Genet. 10, e1004630 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Drolet, M. Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology. Mol. Microbiol. 59, 723–730 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. El Hage, A., French, S.L., Beyer, A.L. & Tollervey, D. Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev. 24, 1546–1558 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roy, D., Zhang, Z., Lu, Z., Hsieh, C.L. & Lieber, M.R. Competition between the RNA transcript and the nontemplate DNA strand during R-loop formation in vitro: a nick can serve as a strong R-loop initiation site. Mol. Cell. Biol. 30, 146–159 (2010). This study provides the first evidence that a dsDNA nick induces DNA–RNA hybrid formation within in vitro –transcribed supercoiled plasmid templates containing IgS repeats.

    Article  CAS  PubMed  Google Scholar 

  41. Duquette, M.L., Huber, M.D. & Maizels, N. G-rich proto-oncogenes are targeted for genomic instability in B-cell lymphomas. Cancer Res. 67, 2586–2594 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Heyer, W.D., Ehmsen, K.T. & Liu, J. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113–139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pourquier, P. & Pommier, Y. Topoisomerase I-mediated DNA damage. Adv. Cancer Res. 80, 189–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Sordet, O. et al. Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep. 10, 887–893 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Groh, M., Lufino, M.M., Wade-Martins, R. & Gromak, N. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet. 10, e1004318 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Britton, S. et al. DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Res. 42, 9047–9062 (2014).The authors show that a catalytically inactive version of E. coli RNase H accumulates at human DNA lesions in a transcription-dependent manner following laser micro-irradiation, giving rise to ssDNA nicks and DSBs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, L. et al. DEAD box 1 facilitates removal of RNA and homologous recombination at DNA double-strand breaks. Mol. Cell. Biol. 36, 2794–2810 (2016). This study reports DNA–RNA hybrid accumulation around a DSB when human cells are depleted of the DDX1 helicase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ohle, C. et al. Transient RNA-DNA hybrids are required for efficient double-strand break repair. Cell. 167, 1001–1013.e7 (2016.)DNA –RNA hybrids are shown to accumulate at I-Ppo I-induced DSBs in rnh1Δ rnh2ΔS. pombe cells, and RNAPII is enriched at the break site. The authors propose that DNA–RNA hybrids are required for DSB repair.

    Article  CAS  PubMed  Google Scholar 

  49. Li, L., Monckton, E.A. & Godbout, R. A role for DEAD box 1 at DNA double-strand breaks. Mol. Cell. Biol. 28, 6413–6425 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kasahara, M., Clikeman, J.A., Bates, D.B. & Kogoma, T. RecA protein-dependent R-loop formation in vitro. Genes Dev. 14, 360–365 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zaitsev, E.N. & Kowalczykowski, S.C. A novel pairing process promoted by Escherichia coli RecA protein: inverse DNA and RNA strand exchange. Genes Dev. 14, 740–749 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wahba, L., Gore, S.K. & Koshland, D. The homologous recombination machinery modulates the formation of RNA-DNA hybrids and associated chromosome instability. eLife 2, e00505 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Amon, J.D. & Koshland, D. RNase H enables efficient repair of R-loop induced DNA damage. eLife 5, e20533 (2016). This study suggests that persistent R loops compromise DNA repair in S. cerevisiae . A dramatic increase in Rad52 foci is observed in rnh1Δ rnh2Δ cells, and this double-mutant strain is inviable in the absence of Top1 due to defective break-induced replication within the rDNA locus.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Huertas, P. DNA resection in eukaryotes: deciding how to fix the break. Nat. Struct. Mol. Biol. 17, 11–16 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aymard, F. et al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol. 21, 366–374 (2014). This genome-wide analysis in human cells suggests that endonuclease-induced DSBs within transcribed euchromatin are preferentially repaired via HR, whereas those in non-transcribed euchromatin are repaired via NHEJ.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wei, W. et al. A role for small RNAs in DNA double-strand break repair. Cell 149, 101–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Francia, S. et al. Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488, 231–235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Michalik, K.M., Böttcher, R. & Förstemann, K. A small RNA response at DNA ends in Drosophila . Nucleic Acids Res. 40, 9596–9603 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. D'Alessandro, G. & d'Adda di Fagagna, F. Transcription and DNA damage: holding hands or crossing swords? J. Mol. Biol. https://dx.doi.org/10.1016/j.jmb.2016.11.002 (2016).

  60. Keskin, H. et al. Transcript-RNA-templated DNA recombination and repair. Nature 515, 436–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moore, J.K. & Haber, J.E. Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature 383, 644–646 (1996).

    Article  PubMed  Google Scholar 

  62. Yang, J., Zimmerly, S., Perlman, P.S. & Lambowitz, A.M. Efficient integration of an intron RNA into double-stranded DNA by reverse splicing. Nature 381, 332–335 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Haun for style correction. Research in A.A.'s lab is funded by the European Research Council, Spanish Ministry of Economy and Competitiveness, Junta de Andalucía and Worldwide Cancer Research. B.G.-G. is a postdoctoral fellow of the Scientific Foundation of the Spanish Association Against Cancer (AECC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Aguilera.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilera, A., Gómez-González, B. DNA–RNA hybrids: the risks of DNA breakage during transcription. Nat Struct Mol Biol 24, 439–443 (2017). https://doi.org/10.1038/nsmb.3395

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3395

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing