Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Architecture of the Rix1–Rea1 checkpoint machinery during pre-60S-ribosome remodeling

Abstract

Ribosome synthesis is catalyzed by 200 assembly factors, which facilitate efficient production of mature ribosomes. Here, we determined the cryo-EM structure of a Saccharomyces cerevisiae nucleoplasmic pre-60S particle containing the dynein-related 550-kDa Rea1 AAA+ ATPase and the Rix1 subcomplex. This particle differs from its preceding state, the early Arx1 particle, by two massive structural rearrangements: an 180° rotation of the 5S ribonucleoprotein complex and the central protuberance (CP) rRNA helices, and the removal of the 'foot' structure from the 3′ end of the 5.8S rRNA. Progression from the Arx1 to the Rix1 particle was blocked by mutational perturbation of the Rix1-Rea1 interaction but not by a dominant-lethal Rea1 AAA+ ATPase-ring mutant. After remodeling, the Rix1 subcomplex and Rea1 become suitably positioned to sense correct structural maturation of the CP, which allows unidirectional progression toward mature ribosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of the Rea1 AAA+ ATPase ring with Rix1.
Figure 2: Characterization of the Rix1–Ipi1ΔN50–Ipi3 complex and its interaction with Rea1.
Figure 3: Cryo-EM structure of the Rix1–Rea1 pre-60S particle.
Figure 4: Identification and interactions of biogenesis factors.
Figure 5: Comparison of the Rix1–Rea1 and Arx1 pre-60S particles with the mature 60S subunit.
Figure 6: Cryo-EM structures of pre-60S particles isolated from Rea1 and Rix1 mutants.
Figure 7: Model of 60S biogenesis occurring during the combined remodeling-checkpoint steps on intermediate nucleoplasmic pre-60S particles.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Tschochner, H. & Hurt, E. Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol. 13, 255–263 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. de la Cruz, J., Karbstein, K. & Woolford, J.L. Jr. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annu. Rev. Biochem. 84, 93–129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Henras, A.K. et al. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell. Mol. Life Sci. 65, 2334–2359 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Woolford, J.L. Jr. & Baserga, S.J. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195, 643–681 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Watkins, N.J. & Bohnsack, M.T. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip. Rev. RNA 3, 397–414 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Mitchell, P., Petfalski, E. & Tollervey, D. The 3′ end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism. Genes Dev. 10, 502–513 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Oeffinger, M. et al. Rrp17p is a eukaryotic exonuclease required for 5′ end processing of Pre-60S ribosomal RNA. Mol. Cell 36, 768–781 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Henry, Y. et al. The 5′ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. EMBO J. 13, 2452–2463 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Horn, D.M., Mason, S.L. & Karbstein, K. Rcl1 protein, a novel nuclease for 18 S ribosomal RNA production. J. Biol. Chem. 286, 34082–34087 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dragon, F. et al. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417, 967–970 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Grandi, P. et al. 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol. Cell 10, 105–115 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Schäfer, T., Strauss, D., Petfalski, E., Tollervey, D. & Hurt, E. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO J. 22, 1370–1380 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lamanna, A.C. & Karbstein, K. Nob1 binds the single-stranded cleavage site D at the 3′-end of 18S rRNA with its PIN domain. Proc. Natl. Acad. Sci. USA 106, 14259–14264 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pertschy, B. et al. RNA helicase Prp43 and its co-factor Pfa1 promote 20 to 18 S rRNA processing catalyzed by the endonuclease Nob1. J. Biol. Chem. 284, 35079–35091 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmitt, M.E. & Clayton, D.A. Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 7935–7941 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chu, S., Archer, R.H., Zengel, J.M. & Lindahl, L. The RNA of RNase MRP is required for normal processing of ribosomal RNA. Proc. Natl. Acad. Sci. USA 91, 659–663 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, J. et al. Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes. Genes Dev. 21, 2580–2592 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bassler, J. et al. The AAA-ATPase Rea1 drives removal of biogenesis factors during multiple stages of 60S ribosome assembly. Mol. Cell 38, 712–721 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ulbrich, C. et al. Mechanochemical removal of ribosome biogenesis factors from nascent 60S ribosomal subunits. Cell 138, 911–922 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Leidig, C. et al. 60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle. Nat. Commun. 5, 3491 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Nissan, T.A., Bassler, J., Petfalski, E., Tollervey, D. & Hurt, E. 60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. EMBO J. 21, 5539–5547 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ohmayer, U. et al. Studies on the assembly characteristics of large subunit ribosomal proteins in S. cerevisae. PLoS One 8, e68412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matsuo, Y. et al. Coupled GTPase and remodelling ATPase activities form a checkpoint for ribosome export. Nature 505, 112–116 (2014).

    Article  PubMed  CAS  Google Scholar 

  24. Baßler, J. et al. A network of assembly factors is involved in remodeling rRNA elements during preribosome maturation. J. Cell Biol. 207, 481–498 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kemmler, S., Occhipinti, L., Veisu, M. & Panse, V.G. Yvh1 is required for a late maturation step in the 60S biogenesis pathway. J. Cell Biol. 186, 863–880 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lo, K.Y., Li, Z., Wang, F., Marcotte, E.M. & Johnson, A.W. Ribosome stalk assembly requires the dual-specificity phosphatase Yvh1 for the exchange of Mrt4 with P0. J. Cell Biol. 186, 849–862 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rodríguez-Mateos, M. et al. Role and dynamics of the ribosomal protein P0 and its related trans-acting factor Mrt4 during ribosome assembly in Saccharomyces cerevisiae. Nucleic Acids Res. 37, 7519–7532 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kappel, L. et al. Rlp24 activates the AAA-ATPase Drg1 to initiate cytoplasmic pre-60S maturation. J. Cell Biol. 199, 771–782 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pertschy, B. et al. Cytoplasmic recycling of 60S preribosomal factors depends on the AAA protein Drg1. Mol. Cell. Biol. 27, 6581–6592 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Demoinet, E., Jacquier, A., Lutfalla, G. & Fromont-Racine, M. The Hsp40 chaperone Jjj1 is required for the nucleo-cytoplasmic recycling of preribosomal factors in Saccharomyces cerevisiae. RNA 13, 1570–1581 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hung, N.J. & Johnson, A.W. Nuclear recycling of the pre-60S ribosomal subunit-associated factor Arx1 depends on Rei1 in Saccharomyces cerevisiae. Mol. Cell. Biol. 26, 3718–3727 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lebreton, A. et al. A functional network involved in the recycling of nucleocytoplasmic pre-60S factors. J. Cell Biol. 173, 349–360 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hedges, J., West, M. & Johnson, A.W. Release of the export adapter, Nmd3p, from the 60S ribosomal subunit requires Rpl10p and the cytoplasmic GTPase Lsg1p. EMBO J. 24, 567–579 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. West, M., Hedges, J.B., Chen, A. & Johnson, A.W. Defining the order in which Nmd3p and Rpl10p load onto nascent 60S ribosomal subunits. Mol. Cell. Biol. 25, 3802–3813 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gadal, O. et al. Nuclear export of 60s ribosomal subunits depends on Xpo1p and requires a nuclear export sequence-containing factor, Nmd3p, that associates with the large subunit protein Rpl10p. Mol. Cell. Biol. 21, 3405–3415 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Senger, B. et al. The nucle(ol)ar Tif6p and Efl1p are required for a late cytoplasmic step of ribosome synthesis. Mol. Cell 8, 1363–1373 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Lo, K.Y. et al. Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit. Mol. Cell 39, 196–208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nissan, T.A. et al. A pre-ribosome with a tadpole-like structure functions in ATP-dependent maturation of 60S subunits. Mol. Cell 15, 295–301 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Galani, K., Nissan, T.A., Petfalski, E., Tollervey, D. & Hurt, E. Rea1, a dynein-related nuclear AAA-ATPase, is involved in late rRNA processing and nuclear export of 60 S subunits. J. Biol. Chem. 279, 55411–55418 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Carter, A.P., Cho, C., Jin, L. & Vale, R.D. Crystal structure of the dynein motor domain. Science 331, 1159–1165 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kon, T. et al. The 2.8 Å crystal structure of the dynein motor domain. Nature 484, 345–350 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Finkbeiner, E., Haindl, M. & Muller, S. The SUMO system controls nucleolar partitioning of a novel mammalian ribosome biogenesis complex. EMBO J. 30, 1067–1078 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Castle, C.D., Cassimere, E.K. & Denicourt, C. LAS1L interacts with the mammalian Rix1 complex to regulate ribosome biogenesis. Mol. Biol. Cell 23, 716–728 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kressler, D., Hurt, E., Bergler, H. & Bassler, J. The power of AAA-ATPases on the road of pre-60S ribosome maturation--molecular machines that strip pre-ribosomal particles. Biochim. Biophys. Acta 1823, 92–100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Bradatsch, B. et al. Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel. Nat. Struct. Mol. Biol. 19, 1234–1241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Asano, N. et al. Structural and functional analysis of the Rpf2-Rrs1 complex in ribosome biogenesis. Nucleic Acids Res. 43, 4746–4757 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kharde, S., Calviño, F.R., Gumiero, A., Wild, K. & Sinning, I. The structure of Rpf2-Rrs1 explains its role in ribosome biogenesis. Nucleic Acids Res. 43, 7083–7095 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Madru, C. et al. Chaperoning 5S RNA assembly. Genes Dev. 29, 1432–1446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Altvater, M. et al. Targeted proteomics reveals compositional dynamics of 60S pre-ribosomes after nuclear export. Mol. Syst. Biol. 8, 628 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Buscemi, G., Saracino, F., Masnada, D. & Carbone, M.L. The Saccharomyces cerevisiae SDA1 gene is required for actin cytoskeleton organization and cell cycle progression. J. Cell Sci. 113, 1199–1211 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Dez, C., Houseley, J. & Tollervey, D. Surveillance of nuclear-restricted pre-ribosomes within a subnucleolar region of Saccharomyces cerevisiae. EMBO J. 25, 1534–1546 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Calviño, F.R. et al. Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site. Nat. Commun. 6, 6510 (2015).

    Article  PubMed  CAS  Google Scholar 

  54. Kressler, D. et al. Synchronizing nuclear import of ribosomal proteins with ribosome assembly. Science 338, 666–671 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Donati, G., Peddigari, S., Mercer, C.A. & Thomas, G. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep. 4, 87–98 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zheng, J. et al. Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation. Genes Dev. 29, 1524–1534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. James, P., Halladay, J. & Craig, E.A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thomas, B.J. & Rothstein, R. Elevated recombination rates in transcriptionally active DNA. Cell 56, 619–630 (1989).

    Article  CAS  PubMed  Google Scholar 

  61. Simos, G. et al. The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J. 15, 5437–5448 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Saveanu, C. et al. Sequential protein association with nascent 60S ribosomal particles. Mol. Cell. Biol. 23, 4449–4460 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Du, Y.C. & Stillman, B. Yph1p, an ORC-interacting protein: potential links between cell proliferation control, DNA replication, and ribosome biogenesis. Cell 109, 835–848 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Lebreton, A., Saveanu, C., Decourty, L., Jacquier, A. & Fromont-Racine, M. Nsa2 is an unstable, conserved factor required for the maturation of 27 SB pre-rRNAs. J. Biol. Chem. 281, 27099–27108 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Jäger, S., Strayle, J., Heinemeyer, W. & Wolf, D.H. Cic1, an adaptor protein specifically linking the 26S proteasome to its substrate, the SCF component Cdc4. EMBO J. 20, 4423–4431 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Vilardell, J. & Warner, J.R. Ribosomal protein L32 of Saccharomyces cerevisiae influences both the splicing of its own transcript and the processing of rRNA. Mol. Cell. Biol. 17, 1959–1965 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Frey, S., Pool, M. & Seedorf, M. Scp160p, an RNA-binding, polysome-associated protein, localizes to the endoplasmic reticulum of Saccharomyces cerevisiae in a microtubule-dependent manner. J. Biol. Chem. 276, 15905–15912 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. de la Cruz, J., Sanz-Martínez, E. & Remacha, M. The essential WD-repeat protein Rsa4p is required for rRNA processing and intra-nuclear transport of 60S ribosomal subunits. Nucleic Acids Res. 33, 5728–5739 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bassler, J. et al. Identification of a 60S preribosomal particle that is closely linked to nuclear export. Mol. Cell 8, 517–529 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Thierbach, K. et al. Protein interfaces of the conserved Nup84 complex from Chaetomium thermophilum shown by crosslinking mass spectrometry and electron microscopy. Structure 21, 1672–1682 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Walzthoeni, T. et al. False discovery rate estimation for cross-linked peptides identified by mass spectrometry. Nat. Methods 9, 901–903 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Rinner, O. et al. Identification of cross-linked peptides from large sequence databases. Nat. Methods 5, 315–318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Combe, C.W., Fischer, L. & Rappsilber, J. xiNET: cross-link network maps with residue resolution. Mol. Cell. Proteomics 14, 1137–1147 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Liu, X. & Wang, H.W. Single particle electron microscopy reconstruction of the exosome complex using the random conical tilt method. J. Vis. Exp. 49, 2574 (2011).

    Google Scholar 

  77. Lutzmann, M. et al. Reconstitution of Nup157 and Nup145N into the Nup84 complex. J. Biol. Chem. 280, 18442–18451 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Pettersen, E.F. et al. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Chen, J.Z. & Grigorieff, N. SIGNATURE: a single-particle selection system for molecular electron microscopy. J. Struct. Biol. 157, 168–173 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Kucukelbir, A., Sigworth, F.J. & Tagare, H.D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334, 1524–1529 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Trabuco, L.G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Eswar, N. et al. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics 15, 5.6 (2006).

    Google Scholar 

  86. Söding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ban, N. et al. A new system for naming ribosomal proteins. Curr. Opin. Struct. Biol. 24, 165–169 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M. & Barton, G.J. Jalview Version 2: a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Leidig and C. Ungewickell for assistance with cryo-EM and C. Ulbrich (Heidelberg University Biochemistry Center) for providing plasmids. We are grateful to M. Fromont-Racine (Institut Pasteur), M. Remacha (Centro de Biologia Molecular Severo Ochoa), M. Seedorf (Zentrum für Molekulare Biologie der Universität Heidelberg), B. Stillman (Cold Spring Harbor Laboratory), J.R. Warner (Albert Einstein College of Medicine) and D.H. Wolf (University of Stuttgart) for antibodies. This work was supported by grants from the German Research Council (GRK 1721, FOR 1805 and SFB646 to R.B.; HU363/10-5 and HU363/12-1 to E.H.; and BA2316/1-4 to J.B.). R.B. acknowledges support from the Center for Integrated Protein Science (CiPS-M) and the European Research Council (Advanced grant CRYOTRANSLATION). C.B.-G. and M.T. were supported by the Graduiertenkolleg GRK1721 and GRK1188, respectively.

Author information

Authors and Affiliations

Authors

Contributions

M.T., R.B., E.H. and C.B.-G. designed the study. M.T. generated strains and plasmids, performed experiments and purified samples for negative-stain and cryo-EM. J.B. and M.T. analyzed the XL-MS data. D.F. performed the negative-stain EM of the Rix1–Ipi1ΔN50–Ipi3 complex. O.B. collected the cryo-EM data, and C.B.-G. and L.K. processed the data. C.B.-G. built the models and, together with M.T., E.H. and R.B., analyzed the structures. C.B.-G., M.T., E.H. and R.B. interpreted results and wrote the paper.

Corresponding authors

Correspondence to Roland Beckmann or Ed Hurt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Interaction of the Rea1 AAA+ ATPase ring with Rix1.

(a) Comprehensive yeast 2-hybrid analysis using as bait a Rea1 AAA+ ATPase ring construct (amino acids 1-2372) fused to GAL4 BD (binding domain) and the indicated ribosome assembly factors fused to GAL4 AD (activation domain). Cells were spotted in ten-fold serial dilutions on SDC-Leu-Trp (SDC) and SDC-Leu-Trp-His (SDC-His) plates. Growth was monitored after 3 days at 30°C. (b) Affinity-purification of Rea1 wild-type and Rea1 mutants, either lacking the helix 2 insertion in D2 or D4 (see Fig. 1a, b and c). Final eluates were analyzed by SDS-PAGE and Coomassie staining or western blotting using the indicated antibodies. (c) Growth of the RIX1-HA-aid degron strain on YPD (Rix1 expression) or YPD supplemented with 500 µM auxin (Rix1 degradation). Cells were spotted in ten-fold serial dilutions and grown at 30°C. Western blot analysis of the RIX1-HA-aid strain, revealing efficient Rix1-HA-aid depletion. Auxin was added to the medium (500 μM final concentration) and Rix1 depletion was followed using an anti-HA antibody. Arc1 served as a loading control (see Fig. 2b).

Supplementary Figure 2 Multiple sequence alignment of Rea1.

Multiple sequence alignment of Rea1 showing the helix 2 insertion motifs in D2, D4 and the D6 domain (see also Fig. 1a, b and c). The sequences of Saccharomyces cerevisiae (Sc, Q12019), Schizosaccharomyces pombe (Sp, O94248), Kluyveromyces lactis (Kl, Q6CJB6), Chaetomium thermophilum (Ct, G0SHE6), Arabidopsis thaliana (At, F4HRR8), Drosophila melanogaster (Dm, A8DYB0), Mus musculus (Mm, J3QMC5) and Homo sapiens (Hs, Q9NU22) were aligned using ClustalW2 and Jalview. Abbreviations and Uniprot entries are indicated in brackets. The insertions are highlighted above the alignment.

Supplementary Figure 3 Negative-stain EM and biochemical characterization of the Rix1 subcomplex.

(a) Size exclusion chromatography of purified Rix1-Ipi1-Ipi3 complex (red) and Rix1-Ipi1∆N50-Ipi3 complex (blue). The absorbance at 280 nm was plotted against the elution volume. The grey area marks the fractions analyzed by SDS-PAGE and Coomassie staining (lane 2-17). The asterisk marks an N-terminal truncation of Ipi1. (b) Upper panel: representative electron micrograph of the Rix1-Ipi1∆N50-Ipi3 complex stained with uranyl acetate (100-nm scale bar). Lower panel: selected class averages, reprojections and the corresponding 3D reconstructions (10-nm scale bar). (c) Pre-60S particles affinity-purified via FTpA-tagged Ipi1, Ipi3 or Rix1 from yeast strains either expressing (lane 2, 4, 6) or not expressing (lane 1, 3, 5) an extra copy of the respective plasmid-based GFP-tagged Ipi1, Ipi3 or Rix1. The final eluates were analyzed by SDS-PAGE and Coomassie-staining (upper panel), or western blotting using the indicated antibodies (lower panel). Bait proteins are marked with an asterisk, bands corresponding to Ipi3-GFP and Rix1-GFP are labeled with a dot. A signal in the Anti-GFP blot indicates the presence of a second copy in the affinity-purified complex. Whole cell lysates (WCL) used for the various affinity-purifications were also analyzed by western blotting using the indicated antibodies (right panel). The Anti-pA (ProtA) antibody detects the FTpA-tagged bait protein, and the Anti-GFP antibody shows the expression of the second copy. The Anti-Arc1 antibody detects equal loading of lysates.

Supplementary Figure 4 Analysis of the interaction network within the Rix1–Ipi1–Ipi3 complex.

(a) Rix1-Ipi1∆N50-Ipi3 complex incubated with increasing concentrations of isotopic labeled DSS cross-linker. The cross-linked complex was analyzed by SDS-PAGE, Coomassie staining and mass spectrometry (boxed bands). MS data was analyzed by xProphet and xQuest. Inter protein-protein cross-links (score > 19) are displayed in orange, intra protein cross-links are shown in purple. A representative cross-link of two identical Ipi3 peptides is shown. Proteins are colored according to Fig. 1a and 2e. (b), SEC-MALS analysis of Ipi3 wild-type and Ipi3∆cc lacking the C-terminal 51 amino acids, for which a coiled-coil (cc) helix is predicted. The differential refraction index (dRI) and the molecular weight (Mw) were plotted against the elution volume. The grey area marks fractions analyzed by SDS-PAGE and Coomassie staining. Ipi3 wild-type and Ipi3∆cc are shown in blue and red, respectively. (c) Yeast 2-hybrid interactions between Rix1 and Ipi3. Constructs were N or C-terminal fused to GAL4 DNA-binding domain (GAL4-BD) or GAL4 activation domain (GAL4-AD), the orientation is indicated as e.g. BDC or BDN for C or N-terminal respectively. (d) Multiple sequence alignment of Ipi3 showing the C-terminal region. The sequences of Saccharomyces cerevisiae (Sc, P53877), Kluyveromyces lactis (Kl, Q6CRK4), Yarrowia lipolytica (Yl, Q6C953), Schizosaccharomyces pombe (Sp, Q10272), Chaetomium thermophilum (Ct, G0S1T5), Xenopus laevis (Xl, Q4QR01), Mus musculus (Mm, Q4VBE8) and Homo sapiens (Hs, Q9BV38) were aligned using Clustal W2 and Jalview. Abbreviations and Uniprot entries are shown in brackets. The minimal Rix1-interacting sequence is marked underneath the alignment (see Supplementary Fig. 4c). The predicted coiled-coil helix is indicated in red and the Ipi3Δcc truncation above the alignment.

Supplementary Figure 5 In silico sorting scheme of the pre-60S particles.

The particles obtained for the Rix1-Rea1 data (a), Rix1-Rea1-K1089A mutant (b), and Rix1∆C mutant (c), were 3D classified using iterative multi-reference projection alignment. The Rix1-Rea1 and Rix1-Rea1-K1089A mutant data gave rise to classes mostly differing on factor presence. The classes enriched for the Rix1 subcomplex and Rea1 (10% of the data in the case of the Rix1-Rea1 particle and 8% in the case of the Rix1-Rea1-K1089A) were refined to the final volume. In the case of the Rix1∆C mutant, particles were sorted into 3 sub-populations, 2 of them containing an unrotated 5S RNP (left and middle), and the third subpopulation, representing 8% of the initial amount of particles, showing a rotated 5S RNP (right). The most populated class (39% of the data) was refined to the final volume.

Supplementary Figure 6 Characterization of the Rsa4 UBL domain–Rea1 interaction and depletion of the heat-repeat protein Sda1 from yeast cells.

(a) Growth analysis of a GAL1-3xHA-SDA1 depletion strain on YPD (glucose; repressed) and YPG (galactose; induced) plates. Cells were spotted in ten-fold serial dilutions on the indicated plates and growth was monitored after 2 days at 30°C. Western blot analysis of the 3xHA tagged Sda1 in glucose and galactose medium at the indicated time points. Antibody against Arc1 was used to verify equal loading (lower panel). (b) GAL1-3xHA SDA1 strains with either TAP-Flag tagged Rsa4 or FTpA tagged Rix1 were grown in YPG (galactose) or shifted for 6h to YPD (glucose) medium. Eluates from the indicated affinity-purifications were analyzed by SDS-PAGE and Coomassie staining or western blotting using the indicated antibodies. (c) Rix1-FTpA affinity-purifications using either endogenous Rsa4 wild-type (lane1) or overexpressed GFP tagged Rsa4 wild-type, Rsa4ΔUBL or Rsa4 E114D (lane 2-4). Eluates were analyzed with SDS-PAGE and Coomassie staining or western blotting using the indicated antibodies. Protein lanes corresponding to overexpressed GFP-tagged Rsa4 alleles are marked with a black dot. (d) Wild-type yeast strain transformed with plasmids overexpressing the N-terminal GFP tagged RSA4 wild-type, the lethal rsa4 ΔUBL or rsa4 E114D alleles under control of the GAL1-10 promoter. Cells were spotted in 10-fold serial dilutions and growth was monitored on SDC-Trp (glucose) and SGC-Trp (galactose) plates.

Supplementary Figure 7 Pre-60S particles isolated from mutant yeast strains and used for cryo-EM.

(a, b) Affinity-purified pre-60S particles: Rix1-Rea1-K1089A mutant (a) and Rix1∆C mutant (b) were analyzed by SDS-PAGE/Coomassie staining (major bands are indicated) and used for cryo-EM analysis (left). Cryo-EM reconstruction particles (middle) and the same maps colored according to their local resolution (right) are shown.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–4 (PDF 2480 kb)

Supplementary Data Set 1

Uncropped gels and western blots (PDF 7204 kb)

Central protuberance maturation mechanism

Remodeling steps occurring between the Arx1 and Rix1–Rea1 particle, related to Figure 7 (MP4 24786 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrio-Garcia, C., Thoms, M., Flemming, D. et al. Architecture of the Rix1–Rea1 checkpoint machinery during pre-60S-ribosome remodeling. Nat Struct Mol Biol 23, 37–44 (2016). https://doi.org/10.1038/nsmb.3132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing