Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polyadenylation site–induced decay of upstream transcripts enforces promoter directionality

Abstract

Active human promoters produce promoter-upstream transcripts (PROMPTs). Why these RNAs are coupled to decay, whereas their neighboring promoter-downstream mRNAs are not, is unknown. Here high-throughput sequencing demonstrates that PROMPTs generally initiate in the antisense direction closely upstream of the transcription start sites (TSSs) of their associated genes. PROMPT TSSs share features with mRNA-producing TSSs, including stalled RNA polymerase II (RNAPII) and the production of small TSS-associated RNAs. Notably, motif analyses around PROMPT 3′ ends reveal polyadenylation (pA)-like signals. Mutagenesis studies demonstrate that PROMPT pA signals are functional but linked to RNA degradation. Moreover, pA signals are under-represented in promoter-downstream versus promoter-upstream regions, thus allowing for more efficient RNAPII progress in the sense direction from gene promoters. We conclude that asymmetric sequence distribution around human gene promoters serves to provide a directional RNA output from an otherwise bidirectional transcription process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exosome depletion reveals similar transcription profiles up- and downstream of promoters.
Figure 2: Exosome sensitivity is triggered by TSS-proximal pA sites.
Figure 3: Mutagenesis of PROMPT pA signals underscores their functionality.
Figure 4: Transcription declines more rapidly downstream of asPROMPT TSSs than mRNA TSSs.
Figure 5: Asymmetric sequence distribution around promoters ensures transcription directionality.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Affymetrix ENCODE Transcriptome Project, Cold Spring Harbor Laboratory ENCODE Transcriptome Project. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature 457, 1028–1032 (2009).

  2. Jacquier, A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat. Rev. Genet. 10, 833–844 (2009).

    Article  CAS  Google Scholar 

  3. Lenhard, B., Sandelin, A. & Carninci, P. Metazoan promoters: emerging characteristics and insights into transcriptional regulation. Nat. Rev. Genet. 13, 233–245 (2012).

    Article  CAS  Google Scholar 

  4. Seila, A.C. et al. Divergent transcription from active promoters. Science 322, 1849–1851 (2008).

    Article  CAS  Google Scholar 

  5. Valen, E. et al. Biogenic mechanisms and utilization of small RNAs derived from human protein-coding genes. Nat. Struct. Mol. Biol. 18, 1075–1082 (2011).

    Article  CAS  Google Scholar 

  6. Taft, R.J. et al. Tiny RNAs associated with transcription start sites in animals. Nat. Genet. 41, 572–578 (2009).

    Article  CAS  Google Scholar 

  7. Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007).

    Article  CAS  Google Scholar 

  8. Sigova, A.A. et al. Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proc. Natl. Acad. Sci. USA 110, 2876–2881 (2013).

    Article  CAS  Google Scholar 

  9. Preker, P. et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science 322, 1851–1854 (2008).

    Article  CAS  Google Scholar 

  10. Flynn, R.A., Almada, A.E., Zamudio, J.R. & Sharp, P.A. Antisense RNA polymerase II divergent transcripts are P-TEFb dependent and substrates for the RNA exosome. Proc. Natl. Acad. Sci. USA 108, 10460–10465 (2011).

    Article  CAS  Google Scholar 

  11. Preker, P. et al. PROMoter uPstream Transcripts share characteristics with mRNAs and are produced upstream of all three major types of mammalian promoters. Nucleic Acids Res. 39, 7179–7193 (2011).

    Article  CAS  Google Scholar 

  12. Nechaev, S. & Adelman, K. Pol II waiting in the starting gates: regulating the transition from transcription initiation into productive elongation. Biochim. Biophys. Acta 1809, 34–45 (2011).

    Article  CAS  Google Scholar 

  13. Anamika, K., Gyenis, A., Poidevin, L., Poch, O. & Tora, L. RNA polymerase II pausing downstream of core histone genes is different from genes producing polyadenylated transcripts. PLoS ONE 7, e38769 (2012).

    Article  CAS  Google Scholar 

  14. Kuehner, J.N., Pearson, E.L. & Moore, C. Unravelling the means to an end: RNA polymerase II transcription termination. Nat. Rev. Mol. Cell Biol. 12, 283–294 (2011).

    Article  CAS  Google Scholar 

  15. Derti, A. et al. A quantitative atlas of polyadenylation in five mammals. Genome Res. 22, 1173–1183 (2012).

    Article  CAS  Google Scholar 

  16. Beaudoing, E., Freier, S., Wyatt, J.R., Claverie, J.M. & Gautheret, D. Patterns of variant polyadenylation signal usage in human genes. Genome Res. 10, 1001–1010 (2000).

    Article  CAS  Google Scholar 

  17. Salisbury, J., Hutchison, K.W. & Graber, J.H. A multispecies comparison of the metazoan 3′-processing downstream elements and the CstF-64 RNA recognition motif. BMC Genomics 7, 55 (2006).

    Article  Google Scholar 

  18. Martin, G., Gruber, A. R., Keller, W. & Zavolan, M. Genome-wide analysis of pre-mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR length. Cell Rep. 1, 753–763 (2012).

    Article  CAS  Google Scholar 

  19. Yao, C. et al. Transcriptome-wide analyses of CstF64-RNA interactions in global regulation of mRNA alternative polyadenylation. Proc. Natl. Acad. Sci. USA 109, 18773–18778 (2012).

    Article  CAS  Google Scholar 

  20. Proudfoot, N.J. Ending the message: poly(A) signals then and now. Genes Dev. 25, 1770–1782 (2011).

    Article  CAS  Google Scholar 

  21. Richard, P. & Manley, J.L. Transcription termination by nuclear RNA polymerases. Genes Dev. 23, 1247–1269 (2009).

    Article  CAS  Google Scholar 

  22. Core, L.J., Waterfall, J.J. & Lis, J.T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  Google Scholar 

  23. Kaida, D. et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 468, 664–668 (2010).

    Article  CAS  Google Scholar 

  24. Core, L. J. et al. Defining the status of RNA polymerase at promoters. Cell Rep. 2, 1025–1035 (2012).

    Article  CAS  Google Scholar 

  25. Wyers, F. et al. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121, 725–737 (2005).

    Article  CAS  Google Scholar 

  26. Gudipati, R.K., Villa, T., Boulay, J. & Libri, D. Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice. Nat. Struct. Mol. Biol. 15, 786–794 (2008).

    Article  CAS  Google Scholar 

  27. Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009).

    Article  CAS  Google Scholar 

  28. Neil, H. et al. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457, 1038–1042 (2009).

    Article  CAS  Google Scholar 

  29. Xu, Z. et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 457, 1033–1037 (2009).

    Article  CAS  Google Scholar 

  30. Zarudnaya, M.I., Kolomiets, I.M., Potyahaylo, A.L. & Hovorun, D.M. Downstream elements of mammalian pre-mRNA polyadenylation signals: primary, secondary and higher-order structures. Nucleic Acids Res. 31, 1375–1386 (2003).

    Article  CAS  Google Scholar 

  31. Andersen, P.K., Lykke-Andersen, S. & Jensen, T.H. Promoter-proximal polyadenylation sites reduce transcription activity. Genes Dev. 26, 2169–2179 (2012).

    Article  CAS  Google Scholar 

  32. Takahashi, H., Kato, S., Murata, M. & Carninci, P. CAGE (cap analysis of gene expression): a protocol for the detection of promoter and transcriptional networks. Methods Mol. Biol. 786, 181–200 (2012).

    Article  CAS  Google Scholar 

  33. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  Google Scholar 

  34. Pelechano, V., Wilkening, S., Jarvelin, A.I., Tekkedil, M.M. & Steinmetz, L.M. Genome-wide polyadenylation site mapping. Methods Enzymol. 513, 271–296 (2012).

    Article  CAS  Google Scholar 

  35. Wilkening, S. et al. An efficient method for genome-wide polyadenylation site mapping and RNA quantification. Nucleic Acids Res. 41, e65 (2013).

    Article  CAS  Google Scholar 

  36. Wu, T.D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26, 873–881 (2010).

    Article  CAS  Google Scholar 

  37. Marstrand, T. T. et al. Asap: a framework for over-representation statistics for transcription factor binding sites. PloS One 3, e1623 (2008).

    Article  Google Scholar 

  38. Portales-Casamar, E. et al. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Res. 38, D105–D110 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Schmid and S. Lykke-Andersen for comments on the manuscript as well as P. Carninci and H. Takahashi for help with the CAGE protocol and S. Wilkening with the 3′ tag protocol. This work was supported by the Danish National Research Foundation (grant DNRF58), the Villum Kann Foundation and the Danish Cancer Society (T.H.J.); the EU 7th Framework Programme (FP7/2007–2013)/European Research Council grant agreement 204135, the Novo Nordisk and Lundbeck Foundations (A. Sandelin); and University of Luxembourg—Institute for Systems Biology Program and the Deutsche Forschungsgemeinschaft (L.M.S.). A. Schein was supported as a recipient of a European Molecular Biology Organization postdoctoral grant.

Author information

Authors and Affiliations

Authors

Contributions

E.N., J.B., A. Sandelin and T.H.J. designed the experiments. E.N., J.B., M.B., A. Schein, P.R.A., P.K.A. and P.P. performed the experiments. A.I.J., Y.C., M.J., R.A., I.H., E.V., X.Z., J.B., V.P., L.M.S. and A. Sandelin did the bioinformatics analyses. E.N., A. Sandelin and T.H.J. wrote the manuscript. All authors have critically read and approved of the manuscript.

Corresponding author

Correspondence to Torben Heick Jensen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplimentery Figures and Tables

Supplementary Figures 1–6 and Supplementary Tables 1–5 (PDF 5950 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ntini, E., Järvelin, A., Bornholdt, J. et al. Polyadenylation site–induced decay of upstream transcripts enforces promoter directionality. Nat Struct Mol Biol 20, 923–928 (2013). https://doi.org/10.1038/nsmb.2640

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2640

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing