Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A cis-antisense RNA acts in trans in Staphylococcus aureus to control translation of a human cytolytic peptide

Abstract

Antisense RNAs (asRNAs) pair to RNAs expressed from the complementary strand, and their functions are thought to depend on nucleotide overlap with genes on the opposite strand. There is little information on the roles and mechanisms of asRNAs. We show that a cis asRNA acts in trans, using a domain outside its target complementary sequence. SprA1 small regulatory RNA (sRNA) and SprA1AS asRNA are concomitantly expressed in S. aureus. SprA1AS forms a complex with SprA1, preventing translation of the SprA1-encoded open reading frame by occluding translation initiation signals through pairing interactions. The SprA1 peptide sequence is within two RNA pseudoknots. SprA1AS represses production of the SprA1-encoded cytolytic peptide in trans, as its overlapping region is dispensable for regulation. These findings demonstrate that sometimes asRNA functional domains are not their gene-target complementary sequences, suggesting there is a need for mechanistic re-evaluation of asRNAs expressed in prokaryotes and eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic location, lengths, boundaries and expression of sprA1 and sprA1AS.
Figure 2: Detection of the interaction between SprA1 and SprA1AS in vivo and assessment of their binding constants.
Figure 3: Experimental and phylogenetic evidence for the pairings between SprA1AS and SprA1.
Figure 4: SprA1 and SprA1AS interact by their 5′ non-overlapping domains.
Figure 5: SprA1 recruits the S. aureus ribosomes and is translated in vitro, and SprA1AS hinders SprA1 translation by its 5′ non-overlapping domain.
Figure 6: SprA1AS cis-RNA acts in trans to downregulate SprA1-encoded peptide expression in vivo.
Figure 7: The SprA1-encoded peptide is lytic for human cells.

Similar content being viewed by others

References

  1. Waters, L.S. & Storz, G. Regulatory RNAs in bacteria. Cell 136, 615–628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. He, Y., Vogelstein, B., Velculescu, V.E., Papadopoulos, N. & Kinzler, K.W. The antisense transcriptomes of human cells. Science 322, 1855–1857 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Georg, J. & Hess, W.R. cis-Antisense RNA, another level of gene regulation in bacteria. Microbiol. Mol. Biol. Rev. 75, 286–300 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharma, C.M. et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464, 250–255 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Felden, B., Vandenesch, F., Bouloc, P. & Romby, P. The Staphylococcus aureus RNome and its commitment to virulence. PLoS Pathog. 7, e1002006 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pichon, C. & Felden, B. Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains. Proc. Natl. Acad. Sci. USA 102, 14249–14254 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abu-Qatouseh, L.F. et al. Identification of differentially expressed small non-protein-coding RNAs in Staphylococcus aureus displaying both the normal and the small-colony variant phenotype. J. Mol. Med. 88, 565–575 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Geissmann, T. et al. A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nucleic Acids Res. 37, 7239–7257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bohn, C. et al. Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism. Nucleic Acids Res. 38, 6620–6636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beaume, M. et al. Cartography of methicillin-resistant S. aureus transcripts: detection, orientation and temporal expression during growth phase and stress conditions. PLoS ONE 5, e10725 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fozo, E.M. et al. Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res. 38, |3743–3759 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baba, T., Bae, T., Schneewind, O., Takeuchi, F. & Hiramatsu, K. Genome sequence of Staphylococcus aureus strain Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J. Bacteriol. 190, 300–310 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Antal, M., Bordeau, V., Douchin, V. & Felden, B. A small bacterial RNA regulates a putative ABC transporter. J. Biol. Chem. 280, 7901–7908 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Peters, J.M., Vangeloff, A.D. & Landick, R. Bacterial transcription terminators: the RNA 3′-end chronicles. J. Mol. Biol. 10.1016/j.jmb.2011.03.036 (2011).

  15. Redko, Y., Bechhofer, D.H. & Condon, C. Mini-III an unusual member of the RNase III family of enzymes, catalyses 23S ribosomal RNA maturation in B. subtilis. Mol. Microbiol. 68, 1096–1106 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Windbichler, N. & Schroeder, R. Isolation of specific RNA-binding proteins using the streptomycin-binding RNA aptamer. Nat. Protoc. 1, 637–640 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Mellor, I.R., Thomas, D.H. & Sansom, M.S. Properties of ion channels formed by Staphylococcus aureus delta-toxin. Biochim. Biophys. Acta 942, 280–294 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Verdon, J., Girardin, N., Lacombe, C., Berjeaud, J.M. & Hechard, Y. delta-hemolysin, an update on a membrane-interacting peptide. Peptides 30, 817–823 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Thomason, M.K. & Storz, G. Bacterial antisense RNAs: how many are there, and what are they doing? Annu. Rev. Genet. 44, 167–188 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chao, Y. & Vogel, J. The role of Hfq in bacterial pathogens. Curr. Opin. Microbiol. 13, 24–33 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Loh, E. et al. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 139, 770–779 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Kaito, C. et al. Transcription and translation products of the cytolysin gene psm-mec on the mobile genetic element SCCmec regulate Staphylococcus aureus virulence. PLoS Pathog. 7, e1001267 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Janzon, L., Lofdahl, S. & Arvidson, S. Identification and nucleotide sequence of the delta-lysin gene, hld, adjacent to the accessory gene regulator (agr) of Staphylococcus aureus. Mol. Gen. Genet. 219, 480–485 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Giese, B. et al. Expression of delta-toxin by Staphylococcus aureus mediates escape from phago-endosomes of human epithelial and endothelial cells in the presence of beta-toxin. Cell. Microbiol. 13, 316–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, R. et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med. 13, 1510–1514 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Dörr, T., Vulic, M. & Lewis, K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 8, e1000317 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Otto, M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu. Rev. Microbiol. 64, 143–162 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Queck, S.Y. et al. RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol. Cell 32, 150–158 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Charpentier, E. et al. Novel cassette-based shuttle vector system for gram-positive bacteria. Appl. Environ. Microbiol. 70, 6076–6085 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chabelskaya, S., Gaillot, O. & Felden, B. A Staphylococcus aureus small RNA is required for bacterial virulence and regulates the expression of an immune-evasion molecule. PLoS Pathog. 6, e1000927 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brückner, R. Gene replacement in Staphylococcus carnosus and Staphylococcus xylosus. FEMS Microbiol. Lett. 151, 1–8 (1997).

    Article  PubMed  Google Scholar 

  32. Cheung, A.L., Eberhardt, K.J. & Fischetti, V.A. A method to isolate RNA from gram-positive bacteria and mycobacteria. Anal. Biochem. 222, 511–514 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Schägger, H. Tricine-SDS-PAGE. Nat. Protoc. 1, 16–22 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to S. Chabelskaya and M. Hallier for critical reading of the manuscript and comments. This study was supported by grant ANR-09-MIEN-030-01 from the Agence Nationale pour la Recherche to B.F. and funds from the Institut National de la Santé et de la Recherche Médicale, Brittany region (grant to N.S.) and from the French Department of Research and Education.

Author information

Authors and Affiliations

Authors

Contributions

N.S. and B.F. designed experiments, prepared samples, analyzed the data and wrote the manuscript. A.J. constructed the sRNA double mutant, did the Hfq experiment and participated in discussions and writing of the manuscript.

Corresponding author

Correspondence to Brice Felden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–2 (PDF 1486 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayed, N., Jousselin, A. & Felden, B. A cis-antisense RNA acts in trans in Staphylococcus aureus to control translation of a human cytolytic peptide. Nat Struct Mol Biol 19, 105–112 (2012). https://doi.org/10.1038/nsmb.2193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2193

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing