Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An asymmetric interface between the regulatory and core particles of the proteasome

Abstract

The Saccharomyces cerevisiae proteasome comprises a 19-subunit regulatory particle and a 28-subunit core particle. To be degraded, substrates must cross the core particle–regulatory particle interface, a site for complex conformational changes and regulatory events. This interface includes two aligned heteromeric rings, one formed by the six ATPase (Rpt) subunits of the regulatory particle and the other by the seven α subunits of the core particle. The Rpt C termini bind to intersubunit cavities in the α-ring, thus directing core particle gating and proteasome assembly. We mapped the Rpt C termini to the α subunit pockets, using a cross-linking approach that revealed an unexpected asymmetry: one side of the ring shows 1:1 contacts of Rpt2-α4, Rpt6-α3 and Rpt3-α2, whereas on the opposite side, the Rpt1, Rpt4 and Rpt5 tails each cross-link to multiple α pockets. Rpt–core particle cross-links are all sensitive to nucleotides, implying that ATP hydrolysis drives dynamic alterations at the core particle–regulatory particle interface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural basis for the cross-linking strategy.
Figure 2: Identification of two α-Rpt subunit pairs by cysteine cross-linking.
Figure 3: Identification of the α4-Rpt2 pair.
Figure 4: Identification of the α3-Rpt6 and α2-Rpt3 pairs.
Figure 5: Identification of cross-links for α5-α6 and α6-α7 pockets.
Figure 6: Model of the base–core particle complex.
Figure 7: Effect of nucleotides on cross-linking between α and Rpt subunits.
Figure 8: The α subunit N-terminal tails and the Rpt proteins proposed to direct their movements.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009).

    Article  CAS  Google Scholar 

  2. Schrader, E.K., Harstad, K.G. & Matouschek, A. Targeting proteins for degradation. Nat. Chem. Biol. 5, 815–822 (2009).

    Article  CAS  Google Scholar 

  3. Demartino, G.N. & Gillette, T.G. Proteasomes: machines for all reasons. Cell 129, 659–662 (2007).

    Article  CAS  Google Scholar 

  4. Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386, 463–471 (1997).

    Article  CAS  Google Scholar 

  5. Yu, Y. et al. Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions. EMBO J. 29, 692–702 (2010).

    Article  CAS  Google Scholar 

  6. Stadtmueller, B.M. et al. Structural models for interactions between the 20S proteasome and its PAN/19S activators. J. Biol. Chem. 285, 13–17 (2010).

    Article  CAS  Google Scholar 

  7. Rabl, J. et al. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 30, 360–368 (2008).

    Article  CAS  Google Scholar 

  8. Smith, D.M. et al. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol. Cell 27, 731–744 (2007).

    Article  CAS  Google Scholar 

  9. Förster, A., Masters, E.I., Whitby, F.G., Robinson, H. & Hill, C.P. The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol. Cell 18, 589–599 (2005).

    Article  Google Scholar 

  10. Köhler, A. et al. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol. Cell 7, 1143–1152 (2001).

    Article  Google Scholar 

  11. Whitby, F.G. et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115–120 (2000).

    Article  CAS  Google Scholar 

  12. Groll, M. et al. A gated channel into the proteasome core particle. Nat. Struct. Biol. 7, 1062–1067 (2000).

    Article  CAS  Google Scholar 

  13. Bajorek, M., Finley, D. & Glickman, M.H. Proteasome disassembly and downregulation is correlated with viability during stationary phase. Curr. Biol. 13, 1140–1144 (2003).

    Article  CAS  Google Scholar 

  14. Smith, D.M., Fraga, H., Reis, C., Kafri, G. & Goldberg, A.L. ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 144, 526–538 (2011).

    Article  CAS  Google Scholar 

  15. Zhang, F. et al. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 34, 473–484 (2009).

    Article  Google Scholar 

  16. Djuranovic, S. et al. Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol. Cell 34, 580–590 (2009).

    Article  CAS  Google Scholar 

  17. Smith, D.M. et al. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol. Cell 20, 687–698 (2005).

    Article  CAS  Google Scholar 

  18. Glickman, M.H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615–623 (1998).

    Article  CAS  Google Scholar 

  19. Weber-Ban, E.U., Reid, B.G., Miranker, A.D. & Horwich, A.L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401, 90–93 (1999).

    Article  CAS  Google Scholar 

  20. Sauer, R.T. & Baker, T.A. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 80, 587–612 (2011).

    Article  CAS  Google Scholar 

  21. Glynn, S.E., Martin, A., Nager, A.R., Baker, T.A. & Sauer, R.T. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139, 744–756 (2009).

    Article  CAS  Google Scholar 

  22. Aubin-Tam, M.E., Olivares, A.O., Sauer, R.T., Baker, T.A. & Lang, M.J. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Cell 145, 257–267 (2011).

    Article  CAS  Google Scholar 

  23. Maillard, R.A. et al. ClpX(P) generates mechanical force to unfold and translocate its protein substrates. Cell 145, 459–469 (2011).

    Article  CAS  Google Scholar 

  24. Saeki, Y., Toh, E.A., Kudo, T., Kawamura, H. & Tanaka, K. Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 137, 900–913 (2009).

    Article  CAS  Google Scholar 

  25. Kaneko, T. et al. Assembly pathway of the mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell 137, 914–925 (2009).

    Article  CAS  Google Scholar 

  26. Funakoshi, M., Tomko, R.J. Jr., Kobayashi, H. & Hochstrasser, M. Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 137, 887–899 (2009).

    Article  CAS  Google Scholar 

  27. Gillette, T.G., Kumar, B., Thompson, D., Slaughter, C.A. & DeMartino, G.N. Differential roles of the COOH termini of AAA subunits of PA700 (19S regulator) in asymmetric assembly and activation of the 26S proteasome. J. Biol. Chem. 283, 31813–31822 (2008).

    Article  CAS  Google Scholar 

  28. Roelofs, J. et al. Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 459, 861–865 (2009).

    Article  CAS  Google Scholar 

  29. Park, S. et al. Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 459, 866–870 (2009).

    Article  CAS  Google Scholar 

  30. Kumar, B., Kim, Y.C. & DeMartino, G.N. The C terminus of Rpt3, an ATPase subunit of PA700 (19 S) regulatory complex, is essential for 26 S proteasome assembly but not for activation. J. Biol. Chem. 285, 39523–39535 (2010).

    Article  CAS  Google Scholar 

  31. Thompson, D., Hakala, K. & DeMartino, G.N. Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity. J. Biol. Chem. 284, 24891–24903 (2009).

    Article  CAS  Google Scholar 

  32. Kusmierczyk, A.R., Kunjappu, M.J., Funakoshi, M. & Hochstrasser, M. A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat. Struct. Mol. Biol. 15, 237–244 (2008).

    Article  CAS  Google Scholar 

  33. Bohn, S. et al. Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution. Proc. Natl. Acad. Sci. USA 107, 20992–20997 (2010).

    Article  CAS  Google Scholar 

  34. Nickell, S. et al. Insights into the molecular architecture of the 26S proteasome. Proc. Natl. Acad. Sci. USA 106, 11943–11947 (2009).

    Article  CAS  Google Scholar 

  35. da Fonseca, P.C. & Morris, E.P. Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core. J. Biol. Chem. 283, 23305–23314 (2008).

    Article  CAS  Google Scholar 

  36. Andréasson, C., Fiaux, J., Rampelt, H., Druffel-Augustin, S. & Bukau, B. Insights into the structural dynamics of the Hsp110-Hsp70 interaction reveal the mechanism for nucleotide exchange activity. Proc. Natl. Acad. Sci. USA 105, 16519–16524 (2008).

    Article  Google Scholar 

  37. Chen, L.L., Rosa, J.J. Turner, S. & Pepinsky, R.B. Production of multimeric forms of CD4 through a sugar-based cross-linking strategy. J. Biol. Chem. 266, 18237–18243 (1991).

    CAS  PubMed  Google Scholar 

  38. Tomko, R.J. Jr., Funakoshi, M., Schneider, K., Wang, J. & Hochstrasser, M. Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol. Cell 38, 393–403 (2010).

    Article  CAS  Google Scholar 

  39. Martin, A., Baker, T.A. & Sauer, R.T. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat. Struct. Mol. Biol. 15, 1147–1151 (2008).

    Article  CAS  Google Scholar 

  40. Wang, J. et al. Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9, 177–184 (2001).

    Article  CAS  Google Scholar 

  41. Bochtler, M. et al. The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403, 800–805 (2000).

    Article  CAS  Google Scholar 

  42. Kleijnen, M.F. et al. Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat. Struct. Mol. Biol. 14, 1180–1188 (2007).

    Article  CAS  Google Scholar 

  43. Chen, C. et al. Subunit-subunit interactions in the human 26S proteasome. Proteomics 8, 508–520 (2008).

    Article  CAS  Google Scholar 

  44. Satoh, K., Sasajima, H., Nyoumura, K.I., Yokosawa, H. & Sawada, H. Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit. Biochemistry 40, 314–319 (2001).

    Article  CAS  Google Scholar 

  45. Hartmann-Petersen, R., Tanaka, K. & Hendil, K.B. Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking. Arch. Biochem. Biophys. 386, 89–94 (2001).

    Article  CAS  Google Scholar 

  46. Davy, A. et al. A protein-protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Rep. 2, 821–828 (2001).

    Article  CAS  Google Scholar 

  47. Zhang, Z. et al. Structural and functional characterization of interaction between hepatitis B virus X protein and the proteasome complex. J. Biol. Chem. 275, 15157–15165 (2000).

    Article  CAS  Google Scholar 

  48. Gerlinger, U.M., Guckel, R., Hoffmann, M., Wolf, D.H. & Hilt, W. Yeast cycloheximide-resistant crl mutants are proteasome mutants defective in protein degradation. Mol. Biol. Cell 8, 2487–2499 (1997).

    Article  CAS  Google Scholar 

  49. Walz, J. et al. 26S proteasome structure revealed by three-dimensional electron microscopy. J. Struct. Biol. 121, 19–29 (1998).

    Article  CAS  Google Scholar 

  50. Park, S., Tian, G., Roelofs, J. & Finley, D. Assembly manual for the proteasome regulatory particle: the first draft. Biochem. Soc. Trans. 38, 6–13 (2010).

    Article  CAS  Google Scholar 

  51. Leggett, D.S. et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10, 495–507 (2002).

    Article  CAS  Google Scholar 

  52. Enemark, E.J. & Joshua-Tor, L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442, 270–275 (2006).

    Article  CAS  Google Scholar 

  53. Thomsen, N.D. & Berger, J.M. Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell 139, 523–534 (2009).

    Article  CAS  Google Scholar 

  54. Davies, J.M., Brunger, A.T. & Weis, W.I. Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change. Structure 16, 715–726 (2008).

    Article  CAS  Google Scholar 

  55. Rose, M.D., Winston, F.M. & Heiter, P. Methods in Yeast Genetics: A Laboratory Course Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1990).

  56. Finley, D., Ozkaynak, E. & Varshavsky, A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035–1046 (1987).

    Article  CAS  Google Scholar 

  57. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).

    Article  CAS  Google Scholar 

  58. Schmidt, M. et al. The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat. Struct. Mol. Biol. 12, 294–303 (2005).

    Article  CAS  Google Scholar 

  59. Leggett, D.S., Glickman, M.H. & Finley, D. Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast. Methods Mol. Biol. 301, 57–70 (2005).

    CAS  PubMed  Google Scholar 

  60. Elsasser, S., Schmidt, M. & Finley, D. Characterization of the proteasome using native gel electrophoresis. Methods Enzymol. 398, 353–363 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Tansey (Vanderbilt University Medical Center) and C. Mann (Commissariat à l'énergie atomique et aux énergies alternatives (CEA)/Saclay) for antibodies, B.-H. Lee for helpful discussions, A. Matouschek for comments on the manuscript and W. Baumeister for permission to reproduce Figure 6D. Funding was provided by US National Institutes of Health grants to D.F. (R37GM43601), C.P.H. (R01 GM59135) and S.G. (GM67945). S.P. was supported by a fellowship from the Charles A. King Trust and M.J.L. by the American Health Assistance Foundation.

Author information

Authors and Affiliations

Authors

Contributions

G.T., S.P., C.P.H. and D.F. contributed to the conception of this project. G.T., S.P. and B.H. contributed to strain construction and genetic analysis. G.T, S.P. and M.J.L. conducted cross-linking studies. F.M. and S.P.G. carried out mass spectrometry on cross-linked samples. G.T., C.P.H. and D.F. were largely responsible for the manuscript.

Corresponding author

Correspondence to Daniel Finley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1 and 2 (PDF 4817 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, G., Park, S., Lee, M. et al. An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol 18, 1259–1267 (2011). https://doi.org/10.1038/nsmb.2147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing