Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Initiation factor eIF2γ promotes eIF2–GTP–Met-tRNAiMet ternary complex binding to the 40S ribosome

Abstract

In contrast to prokaryotic elongation factor EF-Tu, which delivers aminoacyl-tRNAs to the ribosomal A-site, eukaryotic initiation factor eIF2 binds methionyl initiator transfer RNA (Met-tRNAiMet) to the P-site of the 40S ribosomal subunit. The results of directed hydroxyl radical probing experiments to map binding of Saccharomyces cerevisiae eIF2 on the ribosome and on Met-tRNAiMet revealed that eIF2γ primarily contacts the acceptor stem of Met-tRNAiMet and identified a key binding interface between domain III of eIF2γ and 18S rRNA helix h44 on the 40S subunit. Whereas the analogous domain III of EF-Tu contacts the T stem of tRNAs, biochemical analyses demonstrated that eIF2γ domain III is important for ribosome, not Met-tRNAiMet. Thus, despite their structural similarity, eIF2 and EF-Tu bind tRNAs in substantially different manners, and we propose that the tRNA-binding domain III of EF-Tu has acquired a new ribosome-binding function in eIF2γ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of EF-Tu ternary complex and aIF2γ ternary complex model.
Figure 2: Construction and analysis of eIF2 cysteine mutants.
Figure 3: Directed hydroxyl radical cleavage of Met-[32P]tRNAiMet by Fe(II)-BABE–derivatized eIF2 in 48S complexes.
Figure 4: Directed hydroxyl radical cleavage of 18S rRNA by Fe(II)-BABE–derivatized eIF2 in 48S complexes.
Figure 5: eIF2γ binding site for 3′ end of Met-tRNAiMet.
Figure 6: eIF2γ domain III is involved in 40S binding.
Figure 7: 43S complex model.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Schmeing, T.M. et al. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326, 688–694 (2009).

    Article  CAS  Google Scholar 

  2. Voorhees, R.M., Schmeing, T.M., Kelley, A.C. & Ramakrishnan, V. The mechanism for activation of GTP hydrolysis on the ribosome. Science 330, 835–838 (2010).

    Article  CAS  Google Scholar 

  3. Sonenberg, N. & Hinnebusch, A.G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    Article  CAS  Google Scholar 

  4. Fekete, C.A. et al. N- and C-terminal residues of eIF1A have opposing effects on the fidelity of start codon selection. EMBO J. 26, 1602–1614 (2007).

    Article  CAS  Google Scholar 

  5. Lomakin, I.B., Kolupaeva, V.G., Marintchev, A., Wagner, G. & Pestova, T.V. Position of eukaryotic initiation factor eIF1 on the 40S ribosomal subunit determined by directed hydroxyl radical probing. Genes Dev. 17, 2786–2797 (2003).

    Article  CAS  Google Scholar 

  6. Passmore, L.A. et al. The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol. Cell 26, 41–50 (2007).

    Article  CAS  Google Scholar 

  7. Maag, D., Fekete, C.A., Gryczynski, Z. & Lorsch, J.R. A conformational change in the eukaryotic translation preinitiation complex and release of eIF1 signal recognition of the start codon. Mol. Cell 17, 265–275 (2005).

    Article  CAS  Google Scholar 

  8. Yu, Y. et al. Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing. Nucleic Acids Res. 37, 5167–5182 (2009).

    Article  CAS  Google Scholar 

  9. Carter, A.P. et al. Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291, 498–501 (2001).

    Article  CAS  Google Scholar 

  10. Saini, A.K., Nanda, J.S., Lorsch, J.R. & Hinnebusch, A.G. Regulatory elements in eIF1A control the fidelity of start codon selection by modulating tRNAiMet binding to the ribosome. Genes Dev. 24, 97–110 (2010).

    Article  CAS  Google Scholar 

  11. Roll-Mecak, A., Alone, P., Cao, C., Dever, T.E. & Burley, S.K. X-ray structure of translation initiation factor eIF2γ: implications for tRNA and eIF2α binding. J. Biol. Chem. 279, 10634–10642 (2004).

    Article  CAS  Google Scholar 

  12. Schmitt, E., Blanquet, S. & Mechulam, Y. The large subunit of initiation factor aIF2 is a close structural homologue of elongation factors. EMBO J. 21, 1821–1832 (2002).

    Article  CAS  Google Scholar 

  13. Sokabe, M., Yao, M., Sakai, N., Toya, S. & Tanaka, I. Structure of archaeal translational initiation factor 2βγ-GDP reveals significant conformational change of the β-subunit and switch 1 region. Proc. Natl. Acad. Sci. USA 103, 13016–13021 (2006).

    Article  CAS  Google Scholar 

  14. Stolboushkina, E. et al. Crystal structure of the intact archaeal translation initiation factor 2 demonstrates very high conformational flexibility in the α- and β-subunits. J. Mol. Biol. 382, 680–691 (2008).

    Article  CAS  Google Scholar 

  15. Yatime, L., Mechulam, Y., Blanquet, S. & Schmitt, E. Structural switch of the γ subunit in an archaeal aIF2αγ heterodimer. Structure 14, 119–128 (2006).

    Article  CAS  Google Scholar 

  16. Yatime, L., Mechulam, Y., Blanquet, S. & Schmitt, E. Structure of an archaeal heterotrimeric initiation factor 2 reveals a nucleotide state between the GTP and the GDP states. Proc. Natl. Acad. Sci. USA 104, 18445–18450 (2007).

    Article  CAS  Google Scholar 

  17. Rabl, J., Leibundgut, M., Ataide, S.F., Haag, A. & Ban, N. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331, 730–736 (2011).

    Article  CAS  Google Scholar 

  18. Nissen, P. et al. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270, 1464–1472 (1995).

    Article  CAS  Google Scholar 

  19. Basavappa, R. & Sigler, P.B. The 3 Å crystal structure of yeast initiator tRNA: functional implications in initiator/elongator discrimination. EMBO J. 10, 3105–3111 (1991).

    Article  CAS  Google Scholar 

  20. Ben-Shem, A., Jenner, L., Yusupova, G. & Yusupov, M. Crystal structure of the eukaryotic ribosome. Science 330, 1203–1209 (2010).

    Article  CAS  Google Scholar 

  21. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    Article  CAS  Google Scholar 

  22. Dorris, D.R., Erickson, F.L. & Hannig, E.M. Mutations in GCD11, the structural gene for eIF-2γ in yeast, alter translational regulation of GCN4 and the selection of the start site for protein synthesis. EMBO J. 14, 2239–2249 (1995).

    Article  CAS  Google Scholar 

  23. Hinnebusch, A.G. Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 59, 407–450 (2005).

    Article  CAS  Google Scholar 

  24. Harashima, S. & Hinnebusch, A.G. Multiple GCD genes required for repression of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 6, 3990–3998 (1986).

    Article  CAS  Google Scholar 

  25. Erickson, F.L. & Hannig, E.M. Ligand interactions with eukaryotic translation initiation factor 2: role of the γ-subunit. EMBO J. 15, 6311–6320 (1996).

    Article  CAS  Google Scholar 

  26. Sanderson, L.E. & Uhlenbeck, O.C. Directed mutagenesis identifies amino acid residues involved in elongation factor Tu binding to yeast Phe-tRNAPhe. J. Mol. Biol. 368, 119–130 (2007).

    Article  CAS  Google Scholar 

  27. Sanderson, L.E. & Uhlenbeck, O.C. The 51–63 base pair of tRNA confers specificity for binding by EF-Tu. RNA 13, 835–840 (2007).

    Article  CAS  Google Scholar 

  28. Dong, J. et al. Genetic identification of yeast 18S rRNA residues required for efficient recruitment of initiator tRNAMet and AUG selection. Genes Dev. 22, 2242–2255 (2008).

    Article  CAS  Google Scholar 

  29. Pisarev, A.V. et al. Specific functional interactions of nucleotides at key 3 and +4 positions flanking the initiation codon with components of the mammalian 48S translation initiation complex. Genes Dev. 20, 624–636 (2006).

    Article  CAS  Google Scholar 

  30. Battiste, J.L., Pestova, T.V., Hellen, C.U.T. & Wagner, G. The eIF1A solution structure reveals a large RNA-binding surface important for scanning function. Mol. Cell 5, 109–119 (2000).

    Article  CAS  Google Scholar 

  31. Agrawal, R.K., Penczek, P., Grassucci, R.A. & Frank, J. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl. Acad. Sci. USA 95, 6134–6138 (1998).

    Article  CAS  Google Scholar 

  32. Connell, S.R. et al. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol. Cell 25, 751–764 (2007).

    Article  CAS  Google Scholar 

  33. Gao, Y.G. et al. The structure of the ribosome with elongation factor G trapped in the post-translocational state. Science 326, 694–699 (2009).

    Article  CAS  Google Scholar 

  34. Shin, B.S. et al. rRNA suppressor of a eukaryotic translation initiation factor 5B/initiation factor 2 mutant reveals a binding site for translational GTPases on the small ribosomal subunit. Mol. Cell. Biol. 29, 808–821 (2009).

    Article  CAS  Google Scholar 

  35. Simonetti, A. et al. Structure of the 30S translation initiation complex. Nature 455, 416–420 (2008).

    Article  CAS  Google Scholar 

  36. Unbehaun, A. et al. Position of eukaryotic initiation factor eIF5B on the 80S ribosome mapped by directed hydroxyl radical probing. EMBO J. 26, 3109–3123 (2007).

    Article  CAS  Google Scholar 

  37. Yatime, L., Schmitt, E., Blanquet, S. & Mechulam, Y. Functional molecular mapping of archaeal translation initiation factor 2. J. Biol. Chem. 279, 15984–15993 (2004).

    Article  CAS  Google Scholar 

  38. Asano, K. et al. Multiple roles for the carboxyl terminal domain of eIF5 in translation initiation complex assembly and GTPase activation. EMBO J. 20, 2326–2337 (2001).

    Article  CAS  Google Scholar 

  39. Laurino, J.P., Thompson, G.M., Pacheco, E. & Castilho, B.A. The β subunit of eukaryotic translation initiation factor 2 binds mRNA through the lysine repeats and a region comprising the C2-C2 motif. Mol. Cell. Biol. 19, 173–181 (1999).

    Article  CAS  Google Scholar 

  40. Aström, S.U. & Byström, A.S. Rit1, a tRNA backbone-modifying enzyme that mediates initiator and elongator tRNA discrimination. Cell 79, 535–546 (1994).

    Article  Google Scholar 

  41. Aström, S.U., von Pawel-Rammingen, U. & Bystrom, A.S. The yeast initiator tRNAMet can act as an elongator tRNAMetin vivo. J. Mol. Biol. 233, 43–58 (1993).

    Article  Google Scholar 

  42. Dale, T., Sanderson, L.E. & Uhlenbeck, O.C. The affinity of elongation factor Tu for an aminoacyl-tRNA is modulated by the esterified amino acid. Biochemistry 43, 6159–6166 (2004).

    Article  CAS  Google Scholar 

  43. LaRiviere, F.J., Wolfson, A.D. & Uhlenbeck, O.C. Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation. Science 294, 165–168 (2001).

    Article  CAS  Google Scholar 

  44. Kapp, L.D. & Lorsch, J.R. GTP-dependent recognition of the methionine moiety on initiator tRNA by translation factor eIF2. J. Mol. Biol. 335, 923–936 (2004).

    Article  CAS  Google Scholar 

  45. Hinnebusch, A.G. A hierarchy of trans-acting factors modulate translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 5, 2349–2360 (1985).

    Article  CAS  Google Scholar 

  46. Culver, G.M. & Noller, H.F. Directed hydroxyl radical probing of RNA from iron(II) tethered to proteins in ribonucleoprotein complexes. Methods Enzymol. 318, 461–475 (2000).

    Article  CAS  Google Scholar 

  47. Lowe, T.M. & Eddy, S.R. A computational screen for methylation guide snoRNAs in yeast. Science 283, 1168–1171 (1999).

    Article  CAS  Google Scholar 

  48. McPheeters, D.S., Christensen, A., Young, E.T., Stormo, G. & Gold, L. Translational regulation of expression of the bacteriophage T4 lysozyme gene. Nucleic Acids Res. 14, 5813–5826 (1986).

    Article  CAS  Google Scholar 

  49. Acker, M.G., Kolitz, S.E., Mitchell, S.F., Nanda, J.S. & Lorsch, J.R. Reconstitution of yeast translation initiation. Methods Enzymol. 430, 111–145 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Hinnebusch, R. Green and our colleagues in the Dever, Lorsch and Hinnebusch laboratories for advice and helpful discussions. We thank J. Fringer (US National Institutes of Health), D. Eyler, S. He, H. Zaher (all Johns Hopkins University) and O. Uhlenbeck (Northwestern University) for protocols and reagents. This work was supported in part by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, US National Institutes of Health (T.E.D.) and by grant GM62128 from the NIH (J.R.L.).

Author information

Authors and Affiliations

Authors

Contributions

B.-S.S. and J.-R.K. carried out the mutagenesis and protein purification; B.-S.S. conducted the hydroxyl radical mapping experiments, biochemical analyses and model building; S.E.W. did the toe-printing assay and J.D. provided reagents. The manuscript was prepared by B.-S.S., S.E.W., J.R.L. and T.E.D.

Corresponding author

Correspondence to Thomas E Dever.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1 and Supplementary Methods (PDF 4685 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, BS., Kim, JR., Walker, S. et al. Initiation factor eIF2γ promotes eIF2–GTP–Met-tRNAiMet ternary complex binding to the 40S ribosome. Nat Struct Mol Biol 18, 1227–1234 (2011). https://doi.org/10.1038/nsmb.2133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing