Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons

Abstract

Pre-messenger RNAs (pre-mRNAs) maturation is initiated cotranscriptionally. It is therefore conceivable that chromatin-borne information participates in alternative splicing. Here we find that elevated levels of trimethylation of histone H3 on Lys9 (H3K9me3) are a characteristic of the alternative exons of several genes including CD44. On this gene the chromodomain protein HP1γ, frequently defined as a transcriptional repressor, facilitates inclusion of the alternative exons via a mechanism involving decreased RNA polymerase II elongation rate. In addition, accumulation of HP1γ on the variant region of the CD44 gene stabilizes association of the pre-mRNA with the chromatin. Altogether, our data provide evidence for localized histone modifications impacting alternative splicing. They further implicate HP1γ as a possible bridging molecule between the chromatin and the maturating mRNA, with a general impact on splicing decisions.

This is a preview of subscription content, access via your institution

Access options

Figure 1: Histone H3K9 trimethylation (H3K9me3) is enriched on the CD44 alternative exons.
Figure 2: HP1γ regulates alternative splicing of the CD44 transcript.
Figure 3: HP1γ, RNAP II and U2AF65 accumulate on the variant region of CD44 chromatin upon PKC stimulation.
Figure 4: HP1γ bridges chromatin to pre-mRNA.
Figure 5: Cell type–specific distribution of H3K9me3 and HP1γ correlates with variant exon inclusion and RNAP II accumulation.
Figure 6: HP1γ-dependent exon inclusion is guided by an H3K9me3 mark on several genes.
Figure 7: Model for the regulation of CD44 alternative splicing by H3K9me3 and HP1γ.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  Google Scholar 

  2. Allemand, E., Batsche, E. & Muchardt, C. Splicing, transcription, and chromatin: a menage a trois. Curr. Opin. Genet. Dev. 18, 145–151 (2008).

    Article  CAS  Google Scholar 

  3. Auboeuf, D. et al. Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes. Proc. Natl. Acad. Sci. USA 101, 2270–2274 (2004).

    Article  CAS  Google Scholar 

  4. Singh, J. & Padgett, R.A. Rates of in situ transcription and splicing in large human genes. Nat. Struct. Mol. Biol. 16, 1128–1133 (2009).

    Article  CAS  Google Scholar 

  5. Listerman, I., Sapra, A.K. & Neugebauer, K.M. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol. 13, 815–822 (2006).

    Article  CAS  Google Scholar 

  6. Das, R. et al. SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol. Cell 26, 867–881 (2007).

    Article  CAS  Google Scholar 

  7. Hargreaves, D.C., Horng, T. & Medzhitov, R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 138, 129–145 (2009).

    Article  CAS  Google Scholar 

  8. Batsché, E., Yaniv, M. & Muchardt, C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat. Struct. Mol. Biol. 13, 22–29 (2006).

    Article  Google Scholar 

  9. Kornblihtt, A.R., Schor, I.E., Allo, M. & Blencowe, B.J. When chromatin meets splicing. Nat. Struct. Mol. Biol. 16, 902–903 (2009).

    Article  CAS  Google Scholar 

  10. Schwartz, S., Meshorer, E. & Ast, G. Chromatin organization marks exon-intron structure. Nat. Struct. Mol. Biol. 16, 990–995 (2009).

    Article  CAS  Google Scholar 

  11. Tilgner, H. et al. Nucleosome positioning as a determinant of exon recognition. Nat. Struct. Mol. Biol. 16, 996–1001 (2009).

    Article  CAS  Google Scholar 

  12. Andersson, R., Enroth, S., Rada-Iglesias, A., Wadelius, C. & Komorowski, J. Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res. 19, 1732–1741 (2009).

    Article  CAS  Google Scholar 

  13. Brehm, A., Tufteland, K.R., Aasland, R. & Becker, P.B. The many colours of chromodomains. Bioessays 26, 133–140 (2004).

    Article  CAS  Google Scholar 

  14. Mujtaba, S., Zeng, L. & Zhou, M.M. Structure and acetyl-lysine recognition of the bromodomain. Oncogene 26, 5521–5527 (2007).

    Article  CAS  Google Scholar 

  15. Ruthenburg, A.J., Li, H., Patel, D.J. & Allis, C.D. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol. 8, 983–994 (2007).

    Article  CAS  Google Scholar 

  16. Schor, I.E., Rascovan, N., Pelisch, F., Allo, M. & Kornblihtt, A.R. Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc. Natl. Acad. Sci. USA 106, 4325–4330 (2009).

    Article  CAS  Google Scholar 

  17. Sims, R.J. III et al. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol. Cell 28, 665–676 (2007).

    Article  CAS  Google Scholar 

  18. Kolasinska-Zwierz, P. et al. Differential chromatin marking of introns and expressed exons by H3K36me3. Nat. Genet. 41, 376–381 (2009).

    Article  CAS  Google Scholar 

  19. Hon, G., Wang, W. & Ren, B. Discovery and annotation of functional chromatin signatures in the human genome. PLOS Comput. Biol. 5, e1000566 (2009).

    Article  Google Scholar 

  20. Luco, R.F. et al. Regulation of alternative splicing by histone modifications. Science 327, 996–1000 (2010).

    Article  CAS  Google Scholar 

  21. Alló, M. et al. Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat. Struct. Mol. Biol. 16, 717–724 (2009).

    Article  Google Scholar 

  22. Tyagi, A., Ryme, J., Brodin, D., Ostlund Farrants, A.K. & Visa, N. SWI/SNF associates with nascent pre-mRNPs and regulates alternative pre-mRNA processing. PLoS Genet. 5, e1000470 (2009).

    Article  Google Scholar 

  23. de la Mata, M. et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12, 525–532 (2003).

    Article  CAS  Google Scholar 

  24. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  Google Scholar 

  25. Vakoc, C.R., Mandat, S.A., Olenchock, B.A. & Blobel, G.A. Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol. Cell 19, 381–391 (2005).

    Article  CAS  Google Scholar 

  26. Mateescu, B., Bourachot, B., Rachez, C., Ogryzko, V. & Muchardt, C. Regulation of an inducible promoter by an HP1beta-HP1gamma switch. EMBO Rep. 9, 267–272 (2008).

    Article  CAS  Google Scholar 

  27. Smallwood, A., Esteve, P.O., Pradhan, S. & Carey, M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 21, 1169–1178 (2007).

    Article  CAS  Google Scholar 

  28. König, H., Ponta, H. & Herrlich, P. Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J. 17, 2904–2913 (1998).

    Article  Google Scholar 

  29. Lomberk, G., Bensi, D., Fernandez-Zapico, M.E. & Urrutia, R. Evidence for the existence of an HP1-mediated subcode within the histone code. Nat. Cell Biol. 8, 407–415 (2006).

    Article  CAS  Google Scholar 

  30. Newman, A.J. & Nagai, K. Structural studies of the spliceosome: blind men and an elephant. Curr. Opin. Struct. Biol. 20, 82–89 (2010).

    Article  CAS  Google Scholar 

  31. du Chéné, I. et al. Suv39H1 and HP1gamma are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. EMBO J. 26, 424–435 (2007).

    Article  Google Scholar 

  32. Rowe, H.M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237–240 (2010).

    Article  CAS  Google Scholar 

  33. Stewart, M.D., Li, J. & Wong, J. Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol. Cell. Biol. 25, 2525–2538 (2005).

    Article  CAS  Google Scholar 

  34. Fritsch, L. et al. A subset of the histone H3 lysine 9 methyltransferases Suv39h1, G9a, GLP, and SETDB1 participate in a multimeric complex. Mol. Cell 37, 46–56 (2010).

    Article  CAS  Google Scholar 

  35. Muchardt, C. et al. Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1alpha. EMBO Rep. 3, 975–981 (2002).

    Article  CAS  Google Scholar 

  36. Cannistra, S.A., DeFranzo, B., Niloff, J. & Ottensmeir, C. Functional heterogeneity of CD44 molecules in ovarian cancer cell lines. Clin. Cancer Res. 1, 333–342 (1995).

    CAS  PubMed  Google Scholar 

  37. Elgadi, K.M., Meguid, R.A., Qian, M., Souba, W.W. & Abcouwer, S.F. Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing. Physiol. Genomics 1, 51–62 (1999).

    Article  CAS  Google Scholar 

  38. Vicent, G.P. et al. Induction of progesterone target genes requires activation of erk and msk kinases and phosphorylation of histone H3. Mol. Cell 24, 367–381 (2006).

    Article  CAS  Google Scholar 

  39. Lavigne, M. et al. Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression. PLoS Genet. 5, e1000769 (2009).

    Article  Google Scholar 

  40. Flanagin, S., Nelson, J.D., Castner, D.G., Denisenko, O. & Bomsztyk, K. Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events. Nucleic Acids Res. 36, e17 (2008).

    Article  Google Scholar 

  41. Loomis, R.J. et al. Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation. Mol. Cell 33, 450–461 (2009).

    Article  CAS  Google Scholar 

  42. de Wit, E., Greil, F. & van Steensel, B. High-resolution mapping reveals links of HP1 with active and inactive chromatin components. PLoS Genet. 3, e38. doi:10.1371/journal.pgen.0030038.

    Article  Google Scholar 

  43. Piacentini, L. et al. Heterochromatin protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila. PLoS Genet. 5, e1000670 (2009).

    Article  Google Scholar 

  44. Piacentini, L., Fanti, L., Berloco, M., Perrini, B. & Pimpinelli, S. Heterochromatin protein 1 (HP1) is associated with induced gene expression in Drosophila euchromatin. J. Cell Biol. 161, 707–714 (2003).

    Article  CAS  Google Scholar 

  45. Mikkelsen, T.S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  Google Scholar 

  46. Brinkman, A.B. et al. Histone modification patterns associated with the human X chromosome. EMBO Rep. 7, 628–634 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tachibana, M. et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3–K9. Genes Dev. 19, 815–826 (2005).

    Article  CAS  Google Scholar 

  48. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    Article  CAS  Google Scholar 

  49. Moazed, D. Small RNAs in transcriptional gene silencing and genome defence. Nature 457, 413–420 (2009).

    Article  CAS  Google Scholar 

  50. Melcher, M. et al. Structure-function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation, and mitotic progression. Mol. Cell. Biol. 20, 3728–3741 (2000).

    Article  CAS  Google Scholar 

  51. Sampath, S.C. et al. Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol. Cell 27, 596–608 (2007).

    Article  CAS  Google Scholar 

  52. Matter, N., Herrlich, P. & Konig, H. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420, 691–695 (2002).

    Article  CAS  Google Scholar 

  53. Bonnet, F., Vigneron, M., Bensaude, O. & Dubois, M.F. Transcription-independent phosphorylation of the RNA polymerase II C-terminal domain (CTD) involves ERK kinases (MEK1/2). Nucleic Acids Res. 27, 4399–4404 (1999).

    Article  CAS  Google Scholar 

  54. Wahl, M.C., Will, C.L. & Luhrmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).

    Article  CAS  Google Scholar 

  55. Morgenstern, J.P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).

    Article  CAS  Google Scholar 

  56. Méndez, J. & Stillman, B. Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol. Cell. Biol. 20, 8602–8612 (2000).

    Article  Google Scholar 

  57. de la Grange, P., Gratadou, L., Delord, M., Dutertre, M. & Auboeuf, D. Splicing factor and exon profiling across human tissues. Nucleic Acids Res. 38, 2825–2838 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Allemand and J. Seeler for critical reading of the manuscript, and D. Auboeuf (INSERM U590, Centre Léon Bérard, France), P de la Grange (Genosplice Technology, France), V. Ogryzko (CNRS, IGR, Université Paris-XI, France), L. Fritsch and S. Ait-Si-Ali (Université Paris–Diderot, Paris, France) for advice and gifts of reagents. V.S.-A. received fellowships from Région Ile-de-France and L'Association pour la Recherche sur le Cancer. The work was supported by grants from the Agence National de la Recherche and Cancéropôle Ile-de-France.

Author information

Authors and Affiliations

Authors

Contributions

V.S.-A., E.B. and C.R. designed, performed and analyzed the experiments and prepared the manuscript. C.M. conceived the project and wrote the manuscript.

Corresponding author

Correspondence to Christian Muchardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1 and 2 (PDF 555 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saint-André, V., Batsché, E., Rachez, C. et al. Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons. Nat Struct Mol Biol 18, 337–344 (2011). https://doi.org/10.1038/nsmb.1995

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1995

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing