Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signal integration through blending, bolstering and bifurcating of intracellular information

Subjects

Abstract

A cell's response to its environment is often determined by signaling through the actions of enzyme cascades. The ability to organize these enzymes into multiprotein complexes allows for a high degree of fidelity, efficiency and spatial precision in signaling responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of mechanisms of signal transduction.
Figure 2: Signal integration: the DISC1 scaffold integrates Wnt and cAMP signaling to coordinate neurodevelopment.
Figure 3: Ste5 coordinates signal activation in the yeast mating pathway.
Figure 4: Segregation of estrogen signaling events.

Similar content being viewed by others

References

  1. Scott, J.D. & Pawson, T. Cell signaling in space and time: where proteins come together and when they're apart. Science 326, 1220–1224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Saltiel, A.R. & Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799–806 (2001).

    CAS  PubMed  Google Scholar 

  3. Bers, D.M. Calcium cycling and signaling in cardiac myocytes. Annu. Rev. Physiol. 70, 23–49 (2008).

    CAS  PubMed  Google Scholar 

  4. Millar, J.K. et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum. Mol. Genet. 9, 1415–1423 (2000).

    CAS  PubMed  Google Scholar 

  5. St. Clair, D. et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 336, 13–16 (1990).

    CAS  PubMed  Google Scholar 

  6. Rapoport, J.L., Addington, A.M., Frangou, S. & Psych, M.R. The neurodevelopmental model of schizophrenia: update 2005. Mol. Psychiatry 10, 434–449 (2005).

    CAS  PubMed  Google Scholar 

  7. Lewis, D.A. & Levitt, P. Schizophrenia as a disorder of neurodevelopment. Annu. Rev. Neurosci. 25, 409–432 (2002).

    CAS  PubMed  Google Scholar 

  8. Brandon, N.J. et al. Understanding the role of DISC1 in psychiatric disease and during normal development. J. Neurosci. 29, 12768–12775 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mao, Y. et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3β/β-catenin signaling. Cell 136, 1017–1031 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Millar, J.K. et al. DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310, 1187–1191 (2005).

    CAS  PubMed  Google Scholar 

  11. Murdoch, H. et al. Isoform-selective susceptibility of DISC1/phosphodiesterase-4 complexes to dissociation by elevated intracellular cAMP levels. J. Neurosci. 27, 9513–9524 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Clapcote, S.J. et al. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54, 387–402 (2007).

    CAS  PubMed  Google Scholar 

  13. Fang, X. et al. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc. Natl. Acad. Sci. USA 97, 11960–11965 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wan, F. & Lenardo, M.J. The nuclear signaling of NF-κB: current knowledge, new insights, and future perspectives. Cell Res. 20, 24–33 (2010).

    CAS  PubMed  Google Scholar 

  15. Beg, A.A. et al. IκB interacts with the nuclear localization sequences of the subunits of NF-κB: a mechanism for cytoplasmic retention. Genes Dev. 6, 1899–1913 (1992).

    CAS  PubMed  Google Scholar 

  16. Baeuerle, P.A. & Baltimore, D. Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-κB transcription factor. Cell 53, 211–217 (1988).

    CAS  PubMed  Google Scholar 

  17. Thompson, J.E., Phillips, R.J., Erdjument-Bromage, H., Tempst, P. & Ghosh, S. IκB-β regulates the persistent response in a biphasic activation of NF-κB. Cell 80, 573–582 (1995).

    CAS  PubMed  Google Scholar 

  18. Regnier, C.H. et al. Identification and characterization of an IκB kinase. Cell 90, 373–383 (1997).

    CAS  PubMed  Google Scholar 

  19. Woronicz, J.D., Gao, X., Cao, Z., Rothe, M. & Goeddel, D.V. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science 278, 866–869 (1997).

    CAS  PubMed  Google Scholar 

  20. DiDonato, J.A., Hayakawa, M., Rothwarf, D.M., Zandi, E. & Karin, M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388, 548–554 (1997).

    CAS  PubMed  Google Scholar 

  21. Zandi, E., Rothwarf, D.M., Delhase, M., Hayakawa, M. & Karin, M. The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell 91, 243–252 (1997).

    CAS  PubMed  Google Scholar 

  22. Yamaoka, S. et al. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell 93, 1231–1240 (1998).

    CAS  PubMed  Google Scholar 

  23. Tang, E.D., Wang, C.Y., Xiong, Y. & Guan, K.L. A role for NF-κB essential modifier/IκB kinase-γ (NEMO/IKKγ) ubiquitination in the activation of the IκB kinase complex by tumor necrosis factor-α. J. Biol. Chem. 278, 37297–37305 (2003).

    CAS  PubMed  Google Scholar 

  24. Zhou, H. et al. Bcl10 activates the NF-κB pathway through ubiquitination of NEMO. Nature 427, 167–171 (2004).

    CAS  PubMed  Google Scholar 

  25. Scherer, D.C., Brockman, J.A., Chen, Z., Maniatis, T. & Ballard, D.W. Signal-induced degradation of IκB alpha requires site-specific ubiquitination. Proc. Natl. Acad. Sci. USA 92, 11259–11263 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. DiDonato, J. et al. Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16, 1295–1304 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu, C. & Ghosh, S. β-TrCP mediates the signal-induced ubiquitination of IκBβ. J. Biol. Chem. 274, 29591–29594 (1999).

    CAS  PubMed  Google Scholar 

  28. Yaron, A. et al. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396, 590–594 (1998).

    CAS  PubMed  Google Scholar 

  29. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801–805 (2003).

    CAS  PubMed  Google Scholar 

  30. Zeke, A., Lukacs, M., Lim, W.A. & Remenyi, A. Scaffolds: interaction platforms for cellular signalling circuits. Trends Cell Biol. 19, 364–374 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Morrison, D.K. & Davis, R.J. Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu. Rev. Cell Dev. Biol. 19, 91–118 (2003).

    CAS  PubMed  Google Scholar 

  32. Kolch, W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat. Rev. Mol. Cell Biol. 6, 827–837 (2005).

    CAS  PubMed  Google Scholar 

  33. Brown, M.D. & Sacks, D.B. Protein scaffolds in MAP kinase signalling. Cell. Signal. 21, 462–469 (2009).

    CAS  PubMed  Google Scholar 

  34. Weston, C.R. & Davis, R.J. The JNK signal transduction pathway. Curr. Opin. Cell Biol. 19, 142–149 (2007).

    CAS  PubMed  Google Scholar 

  35. Elion, E.A. Pheromone response, mating and cell biology. Curr. Opin. Microbiol. 3, 573–581 (2000).

    CAS  PubMed  Google Scholar 

  36. Liu, H., Styles, C.A. & Fink, G.R. Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science 262, 1741–1744 (1993).

    CAS  PubMed  Google Scholar 

  37. Posas, F. & Saito, H. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276, 1702–1705 (1997).

    CAS  PubMed  Google Scholar 

  38. Feng, Y., Song, L.Y., Kincaid, E., Mahanty, S.K. & Elion, E.A. Functional binding between Gβ and the LIM domain of Ste5 is required to activate the MEKK Ste11. Curr. Biol. 8, 267–278 (1998).

    CAS  PubMed  Google Scholar 

  39. Park, S.H., Zarrinpar, A. & Lim, W.A. Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science 299, 1061–1064 (2003).

    CAS  PubMed  Google Scholar 

  40. Appert-Collin, A., Cotecchia, S., Nenniger-Tosato, M., Pedrazzini, T. & Diviani, D. The A-kinase anchoring protein (AKAP)-Lbc-signaling complex mediates α1 adrenergic receptor-induced cardiomyocyte hypertrophy. Proc. Natl. Acad. Sci. USA 104, 10140–10145 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Carnegie, G.K. et al. AKAP-Lbc mobilizes a cardiac hypertrophy signaling pathway. Mol. Cell 32, 169–179 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Molkentin, J.D. & Dorn, G.W. II. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 63, 391–426 (2001).

    CAS  PubMed  Google Scholar 

  43. Black, B.L. & Olson, E.N. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol. 14, 167–196 (1998).

    CAS  PubMed  Google Scholar 

  44. Vega, R.B. et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol. Cell. Biol. 24, 8374–8385 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sucharov, C.C., Langer, S., Bristow, M. & Leinwand, L. Shuttling of HDAC5 in H9C2 cells regulates YY1 function through CaMKIV/PKD and PP2A. Am. J. Physiol. Cell Physiol. 291, C1029–C1037 (2006).

    CAS  PubMed  Google Scholar 

  46. Carnegie, G.K., Smith, F.D., McConnachie, G., Langeberg, L.K. & Scott, J.D. AKAP-Lbc nucleates a protein kinase D activation scaffold. Mol. Cell 15, 889–899 (2004).

    CAS  PubMed  Google Scholar 

  47. Pietras, R.J. & Szego, C.M. Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells. Nature 265, 69–72 (1977).

    CAS  PubMed  Google Scholar 

  48. Norfleet, A.M., Thomas, M.L., Gametchu, B. & Watson, C.S. Estrogen receptor-α detected on the plasma membrane of aldehyde-fixed GH3/B6/F10 rat pituitary tumor cells by enzyme-linked immunocytochemistry. Endocrinology 140, 3805–3814 (1999).

    CAS  PubMed  Google Scholar 

  49. Pedram, A., Razandi, M. & Levin, E.R. Nature of functional estrogen receptors at the plasma membrane. Mol. Endocrinol. 20, 1996–2009 (2006).

    CAS  PubMed  Google Scholar 

  50. Pedram, A. et al. Developmental phenotype of a membrane only estrogen receptor α (MOER) mouse. J. Biol. Chem. 284, 3488–3495 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Acconcia, F. et al. Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17β-estradiol. Mol. Biol. Cell 16, 231–237 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Razandi, M. et al. Identification of a structural determinant necessary for the localization and function of estrogen receptor α at the plasma membrane. Mol. Cell. Biol. 23, 1633–1646 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Watters, J.J., Campbell, J.S., Cunningham, M.J., Krebs, E.G. & Dorsa, D.M. Rapid membrane effects of steroids in neuroblastoma cells: effects of estrogen on mitogen activated protein kinase signalling cascade and c-fos immediate early gene transcription. Endocrinology 138, 4030–4033 (1997).

    CAS  PubMed  Google Scholar 

  54. Migliaccio, A. et al. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J. 15, 1292–1300 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Migliaccio, A. et al. Steroid-induced androgen receptor-oestradiol receptor β-Src complex triggers prostate cancer cell proliferation. EMBO J. 19, 5406–5417 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Simoncini, T. et al. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407, 538–541 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Castoria, G. et al. PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. EMBO J. 20, 6050–6059 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bartucci, M., Morelli, C., Mauro, L., Ando, S. & Surmacz, E. Differential insulin-like growth factor I receptor signaling and function in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Cancer Res. 61, 6747–6754 (2001).

    CAS  PubMed  Google Scholar 

  59. Levin, E.R. Plasma membrane estrogen receptors. Trends Endocrinol. Metab. 20, 477–482 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kahlert, S. et al. Estrogen receptor α rapidly activates the IGF-1 receptor pathway. J. Biol. Chem. 275, 18447–18453 (2000).

    CAS  PubMed  Google Scholar 

  61. Filardo, E.J., Quinn, J.A., Frackelton, A.R. Jr. & Bland, K.I. Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol. Endocrinol. 16, 70–84 (2002).

    CAS  PubMed  Google Scholar 

  62. Balasenthil, S., Barnes, C.J., Rayala, S.K. & Kumar, R. Estrogen receptor activation at serine 305 is sufficient to upregulate cyclin D1 in breast cancer cells. FEBS Lett. 567, 243–247 (2004).

    CAS  PubMed  Google Scholar 

  63. Balasenthil, S. et al. p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J. Biol. Chem. 279, 1422–1428 (2004).

    CAS  PubMed  Google Scholar 

  64. Medunjanin, S. et al. Glycogen synthase kinase-3 interacts with and phosphorylates estrogen receptor α and is involved in the regulation of receptor activity. J. Biol. Chem. 280, 33006–33014 (2005).

    CAS  PubMed  Google Scholar 

  65. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    CAS  PubMed  Google Scholar 

  66. Wong, W. & Scott, J.D. AKAP signalling complexes: focal points in space and time. Nat. Rev. Mol. Cell Biol. 5, 959–970 (2004).

    CAS  PubMed  Google Scholar 

  67. Dodge-Kafka, K.L. et al. The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 437, 574–578 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Coghlan, V.M. et al. Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 267, 108–111 (1995).

    CAS  PubMed  Google Scholar 

  69. Klauck, T.M. et al. Coordination of three signaling enzymes by AKAP79, a mammalian scaffold protein. Science 271, 1589–1592 (1996).

    CAS  PubMed  Google Scholar 

  70. Bhattacharyya, S., Biou, V., Xu, W., Schluter, O. & Malenka, R.C. A critical role for PSD-95/AKAP interactions in endocytosis of synaptic AMPA receptors. Nat. Neurosci. 12, 172–181 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hoshi, N., Langeberg, L.K. & Scott, J.D. Distinct enzyme combinations in AKAP signalling complexes permit functional diversity. Nat. Cell Biol. 7, 1066–1073 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bal, M., Zhang, J., Hernandez, C.C., Zaika, O. & Shapiro, M.S. Ca2+/calmodulin disrupts AKAP79/150 interactions with KCNQ (M-Type) K+ channels. J. Neurosci. 30, 2311–2323 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lu, Y. et al. Age-dependent requirement of AKAP150-anchored PKA and GluR2-lacking AMPA receptors in LTP. EMBO J. 26, 4879–4890 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Scannevin, R.H. & Huganir, R.L. Postsynaptic organization and regulation of excitatory synapses. Nat. Rev. Neurosci. 1, 133–141 (2000).

    CAS  PubMed  Google Scholar 

  75. Bredt, D.S. & Nicoll, R.A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003).

    CAS  PubMed  Google Scholar 

  76. Tavalin, S.J. et al. Regulation of GluR1 by the A-kinase anchoring protein 79 (AKAP79) signaling complex shares properties with long-term depression. J. Neurosci. 22, 3044–3051 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Banke, T.G. et al. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci. 20, 89–102 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Esteban, J.A. et al. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat. Neurosci. 6, 136–143 (2003).

    CAS  PubMed  Google Scholar 

  79. Hoshi, N. et al. AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat. Neurosci. 6, 564–571 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hoshi, N., Langeberg, L.K., Gould, C.M., Newton, A.C. & Scott, J.D. Interaction with AKAP79 modifies the cellular pharmacology of PKC. Mol. Cell 37, 541–550 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Prince, J. & Ahn, N . The case of the disapprearing drug target. Mol. Cell 37, 455–456 (2010).

    CAS  PubMed  Google Scholar 

  82. Giepmans, B.N., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    CAS  PubMed  Google Scholar 

  83. Tsien, R.Y. Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angew. Chem. Int. Edn Engl. 48, 5612–5626 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank members of the Scott lab for their critical review of this manuscript. This work was supported by the Foundation Leducq and by NIH grant DK54441 to J.D.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D Scott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawson, C., Scott, J. Signal integration through blending, bolstering and bifurcating of intracellular information. Nat Struct Mol Biol 17, 653–658 (2010). https://doi.org/10.1038/nsmb.1843

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1843

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing