Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

T-cadherin structures reveal a novel adhesive binding mechanism

Abstract

Vertebrate genomes encode 19 classical cadherins and about 100 nonclassical cadherins. Adhesion by classical cadherins depends on binding interactions in their N-terminal EC1 domains, which swap N-terminal β-strands between partner molecules from apposing cells. However, strand-swapping sequence signatures are absent from nonclassical cadherins, raising the question of how these proteins function in adhesion. Here, we show that T-cadherin, a glycosylphosphatidylinositol (GPI)-anchored cadherin, forms dimers through an alternative nonswapped interface near the EC1-EC2 calcium-binding sites. Mutations within this interface ablate the adhesive capacity of T-cadherin. These nonadhesive T-cadherin mutants also lose the ability to regulate neurite outgrowth from T-cadherin–expressing neurons. Our findings reveal the likely molecular architecture of the T-cadherin homophilic interface and its requirement for axon outgrowth regulation. The adhesive binding mode used by T-cadherin may also be used by other nonclassical cadherins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of T-cadherin EC1 domains.
Figure 2: Structure of the X dimer from chicken T-cadherin, and comparison with the mutant E-cadherin X-dimer structure14 (PDB 1EDH).
Figure 3: Calcium-free structure of mouse T-cadherin EC1-EC2.
Figure 4: SPR analysis of T-cadherin interactions.
Figure 5: Sedimentation equilibrium AUC profiles of T-cadherin and E-cadherin wild-type and mutant proteins.
Figure 6: Cell-aggregation experiments show that the X interface is required for adhesion.
Figure 7: T-cadherin–mediated inhibition of neurite outgrowth depends on the X interface.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Gumbiner, B.M. Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol. 6, 622–634 (2005).

    Article  CAS  Google Scholar 

  2. Takeichi, M. Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol. 7, 619–627 (1995).

    Article  CAS  Google Scholar 

  3. Takeichi, M. The cadherin superfamily in neuronal connections and interactions. Nat. Rev. Neurosci. 8, 11–20 (2007).

    Article  CAS  Google Scholar 

  4. Nollet, F., Kools, P. & van Roy, F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J. Mol. Biol. 299, 551–572 (2000).

    Article  CAS  Google Scholar 

  5. Posy, S., Shapiro, L. & Honig, B. Sequence and structural determinants of strand swapping in cadherin domains: do all cadherins bind through the same adhesive interface? J. Mol. Biol. 378, 954–968 (2008).

    Article  Google Scholar 

  6. Bekirov, I.H., Needleman, L.A., Zhang, W. & Benson, D.L. Identification and localization of multiple classic cadherins in developing rat limbic system. Neuroscience 115, 213–227 (2002).

    Article  CAS  Google Scholar 

  7. Nishimura, E.K., Yoshida, H., Kunisada, T. & Nishikawa, S.I. Regulation of E- and P-cadherin expression correlated with melanocyte migration and diversification. Dev. Biol. 215, 155–166 (1999).

    Article  CAS  Google Scholar 

  8. Price, S.R., De Marco Garcia, N.V., Ranscht, B. & Jessell, T.M. Regulation of motor neuron pool sorting by differential expression of type II cadherins. Cell 109, 205–216 (2002).

    Article  CAS  Google Scholar 

  9. Wu, Q. & Maniatis, T. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97, 779–790 (1999).

    Article  CAS  Google Scholar 

  10. Usui, T. et al. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98, 585–595 (1999).

    Article  CAS  Google Scholar 

  11. Siemens, J. et al. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428, 950–955 (2004).

    Article  CAS  Google Scholar 

  12. Patel, S.D., Chen, C.P., Bahna, F., Honig, B. & Shapiro, L. Cadherin-mediated cell-cell adhesion: sticking together as a family. Curr. Opin. Struct. Biol. 13, 690–698 (2003).

    Article  CAS  Google Scholar 

  13. Boggon, T.J. et al. C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296, 1308–1313 (2002).

    Article  CAS  Google Scholar 

  14. Nagar, B., Overduin, M., Ikura, M. & Rini, J.M. Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature 380, 360–364 (1996).

    Article  CAS  Google Scholar 

  15. Pokutta, S., Herrenknecht, K., Kemler, R. & Engel, J. Conformational changes of the recombinant extracellular domain of E-cadherin upon calcium binding. Eur. J. Biochem. 223, 1019–1026 (1994).

    Article  CAS  Google Scholar 

  16. Goodwin, M. & Yap, A.S. Classical cadherin adhesion molecules: coordinating cell adhesion, signaling and the cytoskeleton. J. Mol. Histol. 35, 839–844 (2004).

    Article  CAS  Google Scholar 

  17. Drees, F., Pokutta, S., Yamada, S., Nelson, W.J. & Weis, W.I. α-catenin is a molecular switch that binds E-cadherin-β-catenin and regulates actin-filament assembly. Cell 123, 903–915 (2005).

    Article  CAS  Google Scholar 

  18. Haussinger, D. et al. Proteolytic E-cadherin activation followed by solution NMR and X-ray crystallography. EMBO J. 23, 1699–1708 (2004).

    Article  Google Scholar 

  19. Pertz, O. et al. A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation. EMBO J. 18, 1738–1747 (1999).

    Article  CAS  Google Scholar 

  20. Shapiro, L. et al. Structural basis of cell-cell adhesion by cadherins. Nature 374, 327–337 (1995).

    Article  CAS  Google Scholar 

  21. Tamura, K., Shan, W.S., Hendrickson, W.A., Colman, D.R. & Shapiro, L. Structure-function analysis of cell adhesion by neural (N-) cadherin. Neuron 20, 1153–1163 (1998).

    Article  CAS  Google Scholar 

  22. Patel, S.D. et al. Type II cadherin ectodomain structures: implications for classical cadherin specificity. Cell 124, 1255–1268 (2006).

    Article  CAS  Google Scholar 

  23. Chen, C.P., Posy, S., Ben-Shaul, A., Shapiro, L. & Honig, B.H. Specificity of cell-cell adhesion by classical cadherins: critical role for low-affinity dimerization through β-strand swapping. Proc. Natl. Acad. Sci. USA 102, 8531–8536 (2005).

    Article  CAS  Google Scholar 

  24. Ranscht, B. & Dours-Zimmermann, M.T. T-cadherin, a novel cadherin cell adhesion molecule in the nervous system lacks the conserved cytoplasmic region. Neuron 7, 391–402 (1991).

    Article  CAS  Google Scholar 

  25. Vestal, D.J. & Ranscht, B. Glycosyl phosphatidylinositol–anchored T-cadherin mediates calcium-dependent, homophilic cell adhesion. J. Cell Biol. 119, 451–461 (1992).

    Article  CAS  Google Scholar 

  26. Miskevich, F., Zhu, Y., Ranscht, B. & Sanes, J.R. Expression of multiple cadherins and catenins in the chick optic tectum. Mol. Cell. Neurosci. 12, 240–255 (1998).

    Article  CAS  Google Scholar 

  27. Doyle, D.D. et al. T-cadherin is a major glycophosphoinositol-anchored protein associated with noncaveolar detergent-insoluble domains of the cardiac sarcolemma. J. Biol. Chem. 273, 6937–6943 (1998).

    Article  CAS  Google Scholar 

  28. Koller, E. & Ranscht, B. Differential targeting of T- and N-cadherin in polarized epithelial cells. J. Biol. Chem. 271, 30061–30067 (1996).

    Article  CAS  Google Scholar 

  29. Sacristan, M.P., Vestal, D.J., Dours-Zimmermann, M.T. & Ranscht, B. T-cadherin 2: molecular characterization, function in cell adhesion, and coexpression with T-cadherin and N-cadherin. J. Neurosci. Res. 34, 664–680 (1993).

    Article  CAS  Google Scholar 

  30. Dames, S.A. et al. Insights into the low adhesive capacity of human T-cadherin from the NMR structure of its N-terminal extracellular domain. J. Biol. Chem. 283, 23485–23495 (2008).

    Article  CAS  Google Scholar 

  31. Fredette, B.J. & Ranscht, B. T-cadherin expression delineates specific regions of the developing motor axon-hindlimb projection pathway. J. Neurosci. 14, 7331–7346 (1994).

    Article  CAS  Google Scholar 

  32. Fredette, B.J., Miller, J. & Ranscht, B. Inhibition of motor axon growth by T-cadherin substrata. Development 122, 3163–3171 (1996).

    CAS  PubMed  Google Scholar 

  33. Ivanov, D. et al. Expression of cell adhesion molecule T-cadherin in the human vasculature. Histochem. Cell Biol. 115, 231–242 (2001).

    CAS  PubMed  Google Scholar 

  34. Hebbard, L.W. et al. T-cadherin supports angiogenesis and adiponectin association with the vasculature in a mouse mammary tumor model. Cancer Res. 68, 1407–1416 (2008).

    Article  CAS  Google Scholar 

  35. Hug, C. et al. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc. Natl. Acad. Sci. USA 101, 10308–10313 (2004).

    Article  CAS  Google Scholar 

  36. Harrison, O. et al. Two-step adhesive binding by classical cadherins. Nat. Struct. Mol. Biol. advance online publication, doi:10:1038/nsmb.1784 (28 February 2010).

  37. Harrison, O.J., Corps, E.M. & Kilshaw, P.J. Cadherin adhesion depends on a salt bridge at the N-terminus. J. Cell Sci. 118, 4123–4130 (2005).

    Article  CAS  Google Scholar 

  38. Haussinger, D. et al. Calcium-dependent homoassociation of E-cadherin by NMR spectroscopy: changes in mobility, conformation and mapping of contact regions. J. Mol. Biol. 324, 823–839 (2002).

    Article  CAS  Google Scholar 

  39. Chappuis-Flament, S., Wong, E., Hicks, L.D., Kay, C.M. & Gumbiner, B.M. Multiple cadherin extracellular repeats mediate homophilic binding and adhesion. J. Cell Biol. 154, 231–243 (2001).

    Article  CAS  Google Scholar 

  40. Koch, A.W., Pokutta, S., Lustig, A. & Engel, J. Calcium binding and homoassociation of E-cadherin domains. Biochemistry 36, 7697–7705 (1997).

    Article  CAS  Google Scholar 

  41. Bai, S., Datta, J., Jacob, S.T. & Ghoshal, K. Treatment of PC12 cells with nerve growth factor induces proteasomal degradation of T-cadherin that requires tyrosine phosphorylation of its cadherin domain. J. Biol. Chem. 282, 27171–27180 (2007).

    Article  CAS  Google Scholar 

  42. Bai, S., Ghoshal, K. & Jacob, S.T. Identification of T-cadherin as a novel target of DNA methyltransferase 3B and its role in the suppression of nerve growth factor-mediated neurite outgrowth in PC12 cells. J. Biol. Chem. 281, 13604–13611 (2006).

    Article  CAS  Google Scholar 

  43. Wichterle, H., Lieberam, I., Porter, J.A. & Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    Article  CAS  Google Scholar 

  44. Parisini, E., Higgins, J.M., Liu, J.H., Brenner, M.B. & Wang, J.H. The crystal structure of human E-cadherin domains 1 and 2, and comparison with other cadherins in the context of adhesion mechanism. J. Mol. Biol. 373, 401–411 (2007).

    Article  CAS  Google Scholar 

  45. Alattia, J.R. et al. Lateral self-assembly of E-cadherin directed by cooperative calcium binding. FEBS Lett. 417, 405–408 (1997).

    Article  CAS  Google Scholar 

  46. Katsamba, P. et al. Linking molecular affinity and cellular specificity in cadherin-mediated adhesion. Proc. Natl. Acad. Sci. USA 106, 11594–11599 (2009).

    Article  CAS  Google Scholar 

  47. Otwinowski, Z. & Minor, W. Processing of X-ray data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  48. Leslie, A.G.W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 and ESF-EACBM Newsletters on Protein Crystallography 26 (1992).

  49. Collaborative Computation Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  50. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  51. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D Biol. Crystallogr. 59, 2023–2030 (2003).

    Article  CAS  Google Scholar 

  52. Terwilliger, T. SOLVE and RESOLVE: automated structure solution, density modification and model building. J. Synchrotron Radiat. 11, 49–52 (2004).

    Article  CAS  Google Scholar 

  53. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  54. Brunger, A.T. et al. Crystallography and NMR system (CNS): A new software system for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  55. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  56. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  57. Domeniconi, M. et al. MAG induces regulated intramembrane proteolysis of the p75 neurotrophin receptor to inhibit neurite outgrowth. Neuron 46, 849–855 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P.D. Kwong for helpful suggestions on the manuscript. This work was supported in part by US National Institutes of Health grants R01 GM062270 (L.S.), U54 CA121852 (B.H. and L.S.) and R01 GM30518 (B.H.) and US National Science Foundation grants MCB-0416708 (B.H.), PO1 HD25938 (B.R.) and T32 GM08666 (H.C.V.). B.H. and T.M.J. are investigators of the Howard Hughes Medical Institute. X-ray data were acquired at the X4A and X4C beamlines of the National Synchrotron Light Source, Brookhaven National Laboratory; the X4 beamlines are operated by the New York Structural Biology Center. Use of the SGX Collaborative Access Team (SGX-CAT) beamline facilities at Sector 31 of the Advanced Photon Source was provided by SGX Pharmaceuticals, Inc., which constructed and operates the facility.

Author information

Authors and Affiliations

Authors

Contributions

C.C. determined and refined all the crystal structures; F.B. produced all the wild-type recombinant proteins; N.Z. performed the neurite outgrowth assays and surface biotinylation; H.C.V. performed the cell-aggregation studies; P.S.K. performed the SPR experiments; G.A. performed the AUC experiments; O.J.H. and J.B. prepared mutant proteins; X.J. helped in crystallographic data collection and refinement; S.P. and J.V. performed bioinformatic analysis; B.R. designed and analyzed cell-based experiments, T.M.J., B.H. and L.S. designed experiments, analyzed data, and wrote the manuscript.

Corresponding author

Correspondence to Lawrence Shapiro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Methods (PDF 1576 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciatto, C., Bahna, F., Zampieri, N. et al. T-cadherin structures reveal a novel adhesive binding mechanism. Nat Struct Mol Biol 17, 339–347 (2010). https://doi.org/10.1038/nsmb.1781

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1781

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing