Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The chromosomal association of condensin II is regulated by a noncatalytic function of PP2A

Abstract

Mitotic chromosomal assembly in vertebrates is regulated by condensin I and condensin II, which work cooperatively but have different chromosomal localization profiles and make distinct mechanistic contributions to this process. We show here that protein phosphatase 2A (PP2A), which interacts with condensin II but not condensin I, plays an essential role in targeting condensin II to chromosomes. Unexpectedly, our data indicate that PP2A acts as a recruiter protein rather than a catalytic enzyme to target condensin II to chromosomes. This recruiting activity of PP2A was inhibited by okadaic acid, but not by fostriecin, even though both molecules strongly inhibited the catalytic activity of PP2A. Additionally, we found that the chromokinesin KIF4a is also targeted to chromosomes via the noncatalytic activity of PP2A. Thus, our studies reveal a previously unknown contribution of PP2A to chromosome assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Condensin II dissociates from assembled chromosomes following treatment with PP2A inhibitors.
Figure 2: PP2A is required for the chromosomal localization of condensin II.
Figure 3: PP2A specifically associates with condensin II and mitotic chromosomes.
Figure 4: The phosphatase activity of PP2A is not essential for the chromosomal association of condensin II.
Figure 5: PP2A-mediated chromosomal localization of condensin II is conserved in human cells.
Figure 6: KIF4a is also localized to chromosomes via noncatalytic action of PP2A.

Similar content being viewed by others

References

  1. Koshland, D. & Strunnikov, A. Mitotic chromosome condensation. Annu. Rev. Cell Dev. Biol. 12, 305–333 (1996).

    Article  CAS  Google Scholar 

  2. Swedlow, J.R. & Hirano, T. The making of the mitotic chromosome: modern insights into classical questions. Mol. Cell 11, 557–569 (2003).

    Article  CAS  Google Scholar 

  3. Belmont, A.S. Mitotic chromosome structure and condensation. Curr. Opin. Cell Biol. 18, 632–638 (2006).

    Article  CAS  Google Scholar 

  4. Maeshima, K. & Eltsov, M. Packaging the genome: the structure of mitotic chromosomes. J. Biochem. 143, 145–153 (2008).

    Article  CAS  Google Scholar 

  5. Gassmann, R., Vagnarelli, P., Hudson, D. & Earnshaw, W.C. Mitotic chromosome formation and the condensin paradox. Exp. Cell Res. 296, 35–42 (2004).

    Article  CAS  Google Scholar 

  6. Hirano, T. Condensins: organizing and segregating the genome. Curr. Biol. 15, R265–R275 (2005).

    Article  CAS  Google Scholar 

  7. Hagstrom, K.A. & Meyer, B.J. Condensin and cohesin: more than chromosome compactor and glue. Nat. Rev. Genet. 4, 520–534 (2003).

    Article  CAS  Google Scholar 

  8. Jessberger, R. The many functions of SMC proteins in chromosome dynamics. Nat. Rev. Mol. Cell Biol. 3, 767–778 (2002).

    Article  CAS  Google Scholar 

  9. Hirano, T. & Mitchison, T.J. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79, 449–458 (1994).

    Article  CAS  Google Scholar 

  10. Hirano, T., Kobayashi, R. & Hirano, M. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89, 511–521 (1997).

    Article  CAS  Google Scholar 

  11. Kimura, K. & Hirano, T. ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 90, 625–634 (1997).

    Article  CAS  Google Scholar 

  12. Kimura, K., Rybenkov, V.V., Crisona, N.J., Hirano, T. & Cozzarelli, N.R. 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation. Cell 98, 239–248 (1999).

    Article  CAS  Google Scholar 

  13. Kimura, K., Hirano, M., Kobayashi, R. & Hirano, T. Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science 282, 487–490 (1998).

    Article  CAS  Google Scholar 

  14. Takemoto, A., Kimura, K., Yokoyama, S. & Hanaoka, F. Cell cycle–dependent phosphorylation, nuclear localization, and activation of human condensin. J. Biol. Chem. 279, 4551–4559 (2004).

    Article  CAS  Google Scholar 

  15. Takemoto, A., Kimura, K., Yanagisawa, J., Yokoyama, S. & Hanaoka, F. Negative regulation of condensin I by CK2-mediated phosphorylation. EMBO J. 25, 5339–5348 (2006).

    Article  CAS  Google Scholar 

  16. Ono, T. et al. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115, 109–121 (2003).

    Article  CAS  Google Scholar 

  17. Yeong, F.M. et al. Identification of a subunit of a novel Kleisin-β–SMC complex as a potential substrate of protein phosphatase 2A. Curr. Biol. 13, 2058–2064 (2003).

    Article  CAS  Google Scholar 

  18. Hagstrom, K.A., Holmes, V.F., Cozzarelli, N.R. & Meyer, B.J. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev. 16, 729–742 (2002).

    Article  CAS  Google Scholar 

  19. Gerlich, D., Hirota, T., Koch, B., Peters, J.M. & Ellenberg, J. Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Curr. Biol. 16, 333–344 (2006).

    Article  CAS  Google Scholar 

  20. Hirota, T., Gerlich, D., Koch, B., Ellenberg, J. & Peters, J.M. Distinct functions of condensin I and II in mitotic chromosome assembly. J. Cell Sci. 117, 6435–6445 (2004).

    Article  CAS  Google Scholar 

  21. Ono, T., Fang, Y., Spector, D.L. & Hirano, T. Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells. Mol. Biol. Cell 15, 3296–3308 (2004).

    Article  CAS  Google Scholar 

  22. Sutani, T. et al. Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. Genes Dev. 13, 2271–2283 (1999).

    Article  CAS  Google Scholar 

  23. Lipp, J.J., Hirota, T., Poser, I. & Peters, J.M. Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes. J. Cell Sci. 120, 1245–1255 (2007).

    Article  CAS  Google Scholar 

  24. Takemoto, A. et al. Analysis of the role of Aurora B on the chromosomal targeting of condensin I. Nucleic Acids Res. 35, 2403–2412 (2007).

    Article  CAS  Google Scholar 

  25. Maddox, P.S., Portier, N., Desai, A. & Oegema, K. Molecular analysis of mitotic chromosome condensation using a quantitative time-resolved fluorescence microscopy assay. Proc. Natl. Acad. Sci. USA 103, 15097–15102 (2006).

    Article  CAS  Google Scholar 

  26. Kimura, K. & Hirano, T. Dual roles of the 11S regulatory subcomplex in condensin functions. Proc. Natl. Acad. Sci. USA 97, 11972–11977 (2000).

    Article  CAS  Google Scholar 

  27. Janssens, V. & Goris, J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 353, 417–439 (2001).

    Article  CAS  Google Scholar 

  28. Janssens, V., Goris, J. & Van Hoof, C. PP2A: the expected tumor suppressor. Curr. Opin. Genet. Dev. 15, 34–41 (2005).

    Article  CAS  Google Scholar 

  29. Trinkle-Mulcahy, L. & Lamond, A.I. Mitotic phosphatases: no longer silent partners. Curr. Opin. Cell Biol. 18, 623–631 (2006).

    Article  CAS  Google Scholar 

  30. Mazumdar, M. & Misteli, T. Chromokinesins: multitalented players in mitosis. Trends Cell Biol. 15, 349–355 (2005).

    Article  CAS  Google Scholar 

  31. Nigg, E.A. Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell Biol. 2, 21–32 (2001).

    Article  CAS  Google Scholar 

  32. Vagnarelli, P. et al. Condensin and Repo-Man-PP1 co-operate in the regulation of chromosome architecture during mitosis. Nat. Cell Biol. 8, 1133–1142 (2006).

    Article  CAS  Google Scholar 

  33. Kloeker, S. et al. Parallel purification of three catalytic subunits of the protein serine/threonine phosphatase 2A family (PP2A(C), PP4(C), and PP6(C)) and analysis of the interaction of PP2A(C) with alpha4 protein. Protein Expr. Purif. 31, 19–33 (2003).

    Article  CAS  Google Scholar 

  34. MacKintosh, C., Beattie, K.A., Klumpp, S., Cohen, P. & Codd, G.A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 264, 187–192 (1990).

    Article  CAS  Google Scholar 

  35. Maton, G., Lorca, T., Girault, J.A., Ozon, R. & Jessus, C. Differential regulation of Cdc2 and Aurora-A in Xenopus oocytes: a crucial role of phosphatase 2A. J. Cell Sci. 118, 2485–2494 (2005).

    Article  CAS  Google Scholar 

  36. Tang, Z. et al. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev. Cell 10, 575–585 (2006).

    Article  CAS  Google Scholar 

  37. Myles, T., Schmidt, K., Evans, D.R., Cron, P. & Hemmings, B.A. Active-site mutations impairing the catalytic function of the catalytic subunit of human protein phosphatase 2A permit baculovirus-mediated overexpression in insect cells. Biochem. J. 357, 225–232 (2001).

    Article  CAS  Google Scholar 

  38. Walsh, A.H., Cheng, A. & Honkanen, R.E. Fostriecin, an antitumor antibiotic with inhibitory activity against serine/threonine protein phosphatases types 1 (PP1) and 2A (PP2A), is highly selective for PP2A. FEBS Lett. 416, 230–234 (1997).

    Article  CAS  Google Scholar 

  39. Kitajima, T.S. et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesion. Nature 441, 46–52 (2006).

    Article  CAS  Google Scholar 

  40. Riedel, C.G. et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441, 53–61 (2006).

    Article  CAS  Google Scholar 

  41. Mazumdar, M., Sundareshan, S. & Misteli, T. Human chromokinesin KIF4A functions in chromosome condensation and segregation. J. Cell Biol. 166, 613–620 (2004).

    Article  CAS  Google Scholar 

  42. Hudson, D.F., Marshall, K.M. & Earnshaw, W.C. Condensin: architect of mitotic chromosomes. Chromosome Res. 17, 131–144 (2009).

    Article  CAS  Google Scholar 

  43. Longworth, M.S., Herr, A., Ji, J.Y. & Dyson, N.J. RBF1 promotes chromatin condensation through a conserved interaction with the Condensin II protein dCAP-D3. Genes Dev. 22, 1011–1024 (2008).

    Article  CAS  Google Scholar 

  44. Xing, H., Vanderford, N.L. & Sarge, K.D. The TBP–PP2A mitotic complex bookmarks genes by preventing condensin action. Nat. Cell Biol. 10, 1318–1323 (2008).

    Article  CAS  Google Scholar 

  45. Xu, Z. et al. Structure and function of the PP2A-shugoshin interaction. Mol. Cell 35, 426–441 (2009).

    Article  CAS  Google Scholar 

  46. Eichhorn, P.J., Creyghton, M.P. & Bernards, R. Protein phosphatase 2A regulatory subunits and cancer. Biochim. Biophys. Acta 1795, 1–15 (2009).

    CAS  PubMed  Google Scholar 

  47. Ikehara, T., Shinjo, F., Ikehara, S., Imamura, S. & Yasumoto, T. Baculovirus expression, purification, and characterization of human protein phosphatase 2A catalytic subunits α and β. Protein Expr. Purif. 45, 150–156 (2006).

    Article  CAS  Google Scholar 

  48. Maeshima, K. & Laemmli, U.K. A two-step scaffolding model for mitotic chromosome assembly. Dev. Cell 4, 467–480 (2003).

    Article  CAS  Google Scholar 

  49. Losada, A., Hirano, M. & Hirano, T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 12, 1986–1997 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Iwabuchi and K. Ohsumi (Nagoya University) for a plasmid that expresses a nondegradable version of Xenopus Cyclin B, W. Earnshaw (University of Edinburgh) for anti-CREST, T. Hirota (Japanese Foundation for Cancer Research) for anti–condensin II, and M. Shimura for technical advice. This work was supported by a MEXT grant-in-aid from the Solution Oriented Research for Science and Technology (SORST) from the Japan Science and Technology Agency; the 21st Century Center of Excellence Program; a nuclear system to decipher operation code (DECODE); the Naito Foundation; a grant on Advanced Medical Technology from the Ministry of Health, Labour and Welfare; and the RIKEN Bioarchitect Project. A. Takemoto is a Japan Society for the Promotion of Science (JSPS) Research Fellow.

Author information

Authors and Affiliations

Authors

Contributions

A.T., K.M. and K.K. designed the study; A.M., N.I., S.Y., T.H., Y.W., F.H. and J.Y. advised; A.T. carried out most of the experiments; K.M. performed immunostaining experiments; K.Y. and K.K. performed experiments for revision; T.I. and S.I. purified PP2A; K.M. and K.K. wrote the manuscript.

Corresponding author

Correspondence to Keiji Kimura.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 (PDF 1518 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takemoto, A., Maeshima, K., Ikehara, T. et al. The chromosomal association of condensin II is regulated by a noncatalytic function of PP2A. Nat Struct Mol Biol 16, 1302–1308 (2009). https://doi.org/10.1038/nsmb.1708

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1708

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing