Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy

A Corrigendum to this article was published on 01 December 2009

This article has been updated

Abstract

Thioredoxins (Trxs) are oxidoreductase enzymes, present in all organisms, that catalyze the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single-molecule level. Here we use single-molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different Trx enzymes. All Trxs show a characteristic Michaelis-Menten mechanism that is detected when the disulfide bond is stretched at low forces, but at high forces, two different chemical behaviors distinguish bacterial-origin from eukaryotic-origin Trxs. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET), whereas bacterial-origin Trxs show both nucleophilic substitution (SN2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogeny of Trx homologs from representative species of the three domains of life.
Figure 2: Single-molecule force-clamp detection of disulfide bond–reduction events catalyzed by Trx enzymes.
Figure 3: Force-dependency of the rate of disulfide reduction by Trx enzymes from different species.
Figure 4: The three chemical mechanisms of disulfide reduction detected by force-clamp spectroscopy.
Figure 5: Structural analysis and molecular dynamics simulations of the binding groove in Trx enzymes.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 18 November 2009

    In the version of this article initially published, Eric A Gaucher’s middle initial was omitted. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Kraut, D.A., Carroll, K.S. & Herschlag, D. Challenges in enzyme mechanism and energetics. Annu. Rev. Biochem. 72, 517–571 (2003).

    Article  CAS  Google Scholar 

  2. Henzler-Wildman, K.A. et al. Intrinsic motions along an enzymatic reaction trajectory. Nature 450, 838–844 (2007).

    Article  CAS  Google Scholar 

  3. Dai, S. et al. Structural snapshots along the reaction pathway of ferredoxin-thioredoxin reductase. Nature 448, 92–96 (2007).

    Article  CAS  Google Scholar 

  4. Mori, T., Vale, R.D. & Tomishige, M. How kinesin waits between steps. Nature 450, 750–754 (2007).

    Article  CAS  Google Scholar 

  5. Asbury, C.L., Fehr, A.N. & Block, S.M. Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003).

    Article  CAS  Google Scholar 

  6. Holmgren, A. Thioredoxin. Annu. Rev. Biochem. 54, 237–271 (1985).

    Article  CAS  Google Scholar 

  7. Lillig, C.H. & Holmgren, A. Thioredoxin and related molecules–from biology to health and disease. Antioxid. Redox Signal. 9, 25–47 (2007).

    Article  CAS  Google Scholar 

  8. Holmgren, A. Reduction of disulfides by thioredoxin. Exceptional reactivity of insulin and suggested functions of thioredoxin in mechanism of hormone action. J. Biol. Chem. 254, 9113–9119 (1979).

    CAS  PubMed  Google Scholar 

  9. Holmgren, A. Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J. Biol. Chem. 254, 9627–9632 (1979).

    CAS  PubMed  Google Scholar 

  10. Holmgren, A. Tryptophan fluorescence study of conformational transitions of the oxidized and reduced form of thioredoxin. J. Biol. Chem. 247, 1992–1998 (1972).

    CAS  PubMed  Google Scholar 

  11. Wiita, A.P. et al. Probing the chemistry of thioredoxin catalysis with force. Nature 450, 124–127 (2007).

    Article  CAS  Google Scholar 

  12. Koti Ainavarapu, S.R., Wiita, A.P., Dougan, L., Uggerud, E. & Fernandez, J.M. Single-molecule force spectroscopy measurements of bond elongation during a bimolecular reaction. J. Am. Chem. Soc. 130, 6479–6487 (2008).

    Article  Google Scholar 

  13. Wiita, A.P., Ainavarapu, S.R., Huang, H.H. & Fernandez, J.M. Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc. Natl. Acad. Sci. USA 103, 7222–7227 (2006).

    Article  CAS  Google Scholar 

  14. Damdimopoulos, A.E., Miranda-Vizuete, A., Pelto-Huikko, M., Gustafsson, J.A. & Spyrou, G. Human mitochondrial thioredoxin. Involvement in mitochondrial membrane potential and cell death. J. Biol. Chem. 277, 33249–33257 (2002).

    Article  CAS  Google Scholar 

  15. Miranda-Vizuete, A., Damdimopoulos, A.E., Gustafsson, J. & Spyrou, G. Cloning, expression, and characterization of a novel Escherichia coli thioredoxin. J. Biol. Chem. 272, 30841–30847 (1997).

    Article  CAS  Google Scholar 

  16. Spyrou, G., Enmark, E., Miranda-Vizuete, A. & Gustafsson, J. Cloning and expression of a novel mammalian thioredoxin. J. Biol. Chem. 272, 2936–2941 (1997).

    Article  CAS  Google Scholar 

  17. Ye, J. et al. Crystal structure of an unusual thioredoxin protein with a zinc finger domain. J. Biol. Chem. 282, 34945–34951 (2007).

    Article  CAS  Google Scholar 

  18. Boucher, I.W. et al. Structural and biochemical characterization of a mitochondrial peroxiredoxin from Plasmodium falciparum. Mol. Microbiol. 61, 948–959 (2006).

    Article  CAS  Google Scholar 

  19. Powis, G. & Montfort, W.R. Properties and biological activities of thioredoxins. Annu. Rev. Biophys. Biomol. Struct. 30, 421–455 (2001).

    Article  CAS  Google Scholar 

  20. Gelhaye, E., Rouhier, N., Navrot, N. & Jacquot, J.P. The plant thioredoxin system. Cell. Mol. Life Sci. 62, 24–35 (2005).

    Article  CAS  Google Scholar 

  21. Meyer, Y. et al. Evolution of redoxin genes in the green lineage. Photosynth. Res. 89, 179–192 (2006).

    Article  CAS  Google Scholar 

  22. Perez-Jimenez, R. et al. Force-clamp spectroscopy detects residue co-evolution in enzyme catalysis. J. Biol. Chem. 283, 27121–27129 (2008).

    Article  CAS  Google Scholar 

  23. Carvalho, A.T. et al. Mechanism of thioredoxin-catalyzed disulfide reduction. Activation of the buried thiol and role of the variable active-site residues. J. Phys. Chem. B 112, 2511–2523 (2008).

    Article  CAS  Google Scholar 

  24. Kappler, U. & Bailey, S. Molecular basis of intramolecular electron transfer in sulfite-oxidizing enzymes is revealed by high resolution structure of a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit. J. Biol. Chem. 280, 24999–25007 (2005).

    Article  CAS  Google Scholar 

  25. Costentin, C. & Saveant, J.M. Competition between SN2 and single electron transfer reactions as a function of steric hindrance illustrated by the model system alkylCl + NO. J. Am. Chem. Soc. 122, 2329–2338 (2000).

    Article  CAS  Google Scholar 

  26. Holm, R.H., Kennepohl, P. & Solomon, E.I. Structural and functional aspects of metal sites in biology. Chem. Rev. 96, 2239–2314 (1996).

    Article  CAS  Google Scholar 

  27. McLendon, G., Komar-Panicucci, S. & Hatch, S. Applying Marcus's theory to electron transfer in vivo. Electron Transfer-from Isolated Molecules to Biomolecules. in Advances in Chemical Physics Vol 107 591–600 (John Wiley & Sons, New York, NY, 1999).

  28. Erlandsson, M. & Hallbrink, M. Metallic zinc reduction of disulfide bonds between cysteine residues in peptides and proteins. Int. J. Pept. Res. Ther. 11, 261–265 (2005).

    Article  CAS  Google Scholar 

  29. Aslund, F., Berndt, K.D. & Holmgren, A. Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria. J. Biol. Chem. 272, 30780–30786 (1997).

    Article  CAS  Google Scholar 

  30. Cheng, Z., Arscott, L.D., Ballou, D.P. & Williams, C.H. Jr. The relationship of the redox potentials of thioredoxin and thioredoxin reductase from Drosophila melanogaster to the enzymatic mechanism: reduced thioredoxin is the reductant of glutathione in Drosophila. Biochemistry 46, 7875–7885 (2007).

    Article  CAS  Google Scholar 

  31. Yasui, S., Itoh, K., Tsujimoto, M. & Ohno, A. Irreversibility of single electron transfer occurring from trivalent phosphorus compounds to Iron(III) complexes in the presence of ethanol. Bull. Chem. Soc. Jpn. 75, 1311–1318 (2002).

    Article  CAS  Google Scholar 

  32. Hazzard, J.T., Marchesini, A., Curir, P. & Tollin, G. Direct measurement by laser flash photolysis of intramolecular electron transfer in the three-electron reduced form of ascorbate oxidase from zucchini. Biochim. Biophys. Acta 1208, 166–170 (1994).

    Article  CAS  Google Scholar 

  33. Farver, O. & Pecht, I. Low activation barriers characterize intramolecular electron transfer in ascorbate oxidase. Proc. Natl. Acad. Sci. USA 89, 8283–8287 (1992).

    Article  CAS  Google Scholar 

  34. Maeda, K., Hagglund, P., Finnie, C., Svensson, B. & Henriksen, A. Structural basis for target protein recognition by the protein disulfide reductase thioredoxin. Structure 14, 1701–1710 (2006).

    Article  CAS  Google Scholar 

  35. Li, Y. et al. Conformational fluctuations coupled to the thiol-disulfide transfer between thioredoxin and arsenate reductase in Bacillus subtilis. J. Biol. Chem. 282, 11078–11083 (2007).

    Article  CAS  Google Scholar 

  36. Lennon, B.W., Williams Jr., C.H., & Ludwig, M.L. Twists in catalysis: alternating conformations of Escherichia coli thioredoxin reductase. Science 289, 1190–1194 (2000).

    Article  CAS  Google Scholar 

  37. Falkowski, P.G. Evolution. Tracing oxygen's imprint on earth's metabolic evolution. Science 311, 1724–1725 (2006).

    Article  CAS  Google Scholar 

  38. Raymond, J. & Segre, D. The effect of oxygen on biochemical networks and the evolution of complex life. Science 311, 1764–1767 (2006).

    Article  CAS  Google Scholar 

  39. Kirschvink, J.L. & Kopp, R.E. Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem II. Phil. Trans. R. Soc. Lond. B 363, 2755–2765 (2008).

    Article  CAS  Google Scholar 

  40. Lemaire, S.D. et al. New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 101, 7475–7480 (2004).

    Article  CAS  Google Scholar 

  41. Sharma, A. et al. Microbial activity at gigapascal pressures. Science 295, 1514–1516 (2002).

    Article  CAS  Google Scholar 

  42. La Duc, M.T. et al. Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments. Appl. Environ. Microbiol. 73, 2600–2611 (2007).

    Article  CAS  Google Scholar 

  43. Koch, A.L. Shrinkage of growing Escherichia coli cells by osmotic challenge. J. Bacteriol. 159, 919–924 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Malone, A.S., Chung, Y.K. & Yousef, A.E. Genes of Escherichia coli O157:H7 that are involved in high-pressure resistance. Appl. Environ. Microbiol. 72, 2661–2671 (2006).

    Article  CAS  Google Scholar 

  45. Gaucher, E.A., Govindarajan, S. & Ganesh, O.K. Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature 451, 704–707 (2008).

    Article  CAS  Google Scholar 

  46. Jones, P.R., Manabe, T., Awazuhara, M. & Saito, K. A new member of plant CS-lyases. A cystine lyase from Arabidopsis thaliana. J. Biol. Chem. 278, 10291–10296 (2003).

    Article  CAS  Google Scholar 

  47. Beynon, R.J., Bond, J.S. & NetLibrary Inc. Proteolytic enzymes: a practical approach. in Practical Approach Series 2nd edn, xviii, 340 (Oxford University Press, Oxford; New York, 2001).

    Google Scholar 

  48. Forman-Kay, J.D., Clore, G.M., Wingfield, P.T. & Gronenborn, A.M. High-resolution three-dimensional structure of reduced recombinant human thioredoxin in solution. Biochemistry 30, 2685–2698 (1991).

    Article  CAS  Google Scholar 

  49. Qin, J., Clore, G.M., Kennedy, W.M., Huth, J.R. & Gronenborn, A.M. Solution structure of human thioredoxin in a mixed disulfide intermediate complex with its target peptide from the transcription factor NF kappa B. Structure 3, 289–297 (1995).

    Article  CAS  Google Scholar 

  50. Peterson, F.C. et al. Solution structure of thioredoxin h1 from Arabidopsis thaliana. Protein Sci. 14, 2195–2200 (2005).

    Article  CAS  Google Scholar 

  51. Capitani, G. et al. Crystal structures of two functionally different thioredoxins in spinach chloroplasts. J. Mol. Biol. 302, 135–154 (2000).

    Article  CAS  Google Scholar 

  52. Smeets, A. et al. Crystal structures of oxidized and reduced forms of human mitochondrial thioredoxin 2. Protein Sci. 14, 2610–2621 (2005).

    Article  Google Scholar 

  53. Katti, S.K., LeMaster, D.M. & Eklund, H. Crystal structure of thioredoxin from Escherichia coli at 1.68 resolution. J. Mol. Biol. 212, 167–184 (1990).

    Article  CAS  Google Scholar 

  54. Lancelin, J.M., Guilhaudis, L., Krimm, I., Blackledge, M.J., Marion, D. & Jacquot, J.P. NMR structures of thioredoxin m from the green alga Chlamydomonas reinhardtii. Proteins 41, 334–349 (2000).

    Article  CAS  Google Scholar 

  55. Qin, J., Clore, G.M., Kennedy, W.P., Kuszewski, J. & Gronenborn, A.M. The solution structure of human thioredoxin complexed with its target from Ref-1 reveals peptide chain reversal. Structure 4, 613–620 (1996).

    Article  CAS  Google Scholar 

  56. Kanzok, S.M., Schirmer, R.H., Turbachova, I., Iozef, R. & Becker, K. The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited. J. Biol. Chem. 275, 40180–40186 (2000).

    Article  CAS  Google Scholar 

  57. Kanzok, S.M. et al. Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science 291, 643–646 (2001).

    Article  CAS  Google Scholar 

  58. Behm, M. & Jacquot, J.P. Isolation and characterization of thioredoxin h from poplar xylem. Plant Physiol. Biochem. 38, 363–369 (2000).

    Article  CAS  Google Scholar 

  59. Gelhaye, E. et al. Identification and characterization of a third thioredoxin h in poplar. Plant Physiol. Biochem. 41, 629–635 (2003).

    Article  CAS  Google Scholar 

  60. López Jaramillo, J. et al. High-yield expression of pea thioredoxin m and assessment of its efficiency in chloroplast fructose-1,6-bisphosphatase activation. Plant Physiol. 114, 1169–1175 (1997).

    Article  Google Scholar 

  61. Perez-Jimenez, R., Godoy-Ruiz, R., Ibarra-Molero, B. & Sanchez-Ruiz, J.M. The efficiency of different salts to screen charge interactions in proteins: a Hofmeister effect? Biophys. J. 86, 2414–2429 (2004).

    Article  CAS  Google Scholar 

  62. Fernandez, J.M. & Li, H.B. Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303, 1674–1678 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Garcia-Manyes and J. Morrone assistance in writing the manuscript and all the Fernandez laboratory members for helpful discussions. This work was supported by the US National Institutes of Health grants HL66030 and HL61228 to J.M.F., grant GMO55090 to J.B., grant GM43340 to B.J.B., grant I.C.E. (Columbia University) to B.J.B. and J.M.F., grant BIO2006-07332 from the Spanish Ministry of Education and Science and FEDER Funds to J.M.S.-R.

Author information

Authors and Affiliations

Authors

Contributions

R.P.-J., J.L. and J.M.F. designed the research; R.P.-J., J.L., P.K., I.S.-R. and A.P.W. carried out the experiments; R.P.-J., J.L., P.K., I.S.-R. and J.M.F. conducted the data analysis; D.R.-L. and J.M.S.-R. provided Trx from E. coli; A.C. provided Trxm from pea; A.H. provided human TRX1; A.M.-V. provided human TRX2; K.B. provided Trx1 from P. falciparum; S.-H.C. and J.B. provided Trx2 from E. coli; E. Gelhaye and J.P.J. provided Trxh1 and Trxh3 from poplar; R.P.-J. and E. Gaucher performed the phylogenetic analysis; J.L. and B.J.B. performed computational analysis and molecular dynamics simulations; R.P.-J., J.L., P.K. and J.M.F. wrote the paper; all authors have actively participated in revising the manuscript.

Corresponding authors

Correspondence to Raul Perez-Jimenez or Julio M Fernandez.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 400 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Jimenez, R., Li, J., Kosuri, P. et al. Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy. Nat Struct Mol Biol 16, 890–896 (2009). https://doi.org/10.1038/nsmb.1627

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1627

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing