Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The fusion pores of Ca2+-triggered exocytosis

Abstract

The aqueous compartment inside a vesicle makes its first connection with the extracellular fluid through an intermediate structure termed the exocytotic fusion pore. Progress in exocytosis can be measured in terms of the formation and growth of the fusion pore. The fusion pore has become a major focus of research in exocytosis; sensitive biophysical measurements have provided various glimpses of what it looks like and how it behaves. Some of the principal questions about the molecular mechanism of exocytosis can be cast explicitly in terms of properties and transitions of fusion pores. This Review will present current knowledge about fusion pores in Ca2+-triggered exocytosis, highlight recent advances and relate questions about fusion pores to broader issues concerning how cells regulate exocytosis and how nerve terminals release neurotransmitter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two models of membrane fusion.
Figure 2: A model of the fusion pore formed by the membrane anchors of syntaxin48.

Similar content being viewed by others

References

  1. Chandler, D.E. & Heuser, J.E. Arrest of membrane fusion events in mast cells by quick-freezing. J. Cell Biol. 86, 666–674 (1980).

    Article  CAS  PubMed  Google Scholar 

  2. Heuser, J.E. & Reese, T.S. Structural changes after transmitter release at the frog neuromuscular junction. J. Cell Biol. 88, 564–580 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Lindau, M. & Almers, W. Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. Curr. Opin. Cell Biol. 7, 509–517 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Klyachko, V.A. & Jackson, M.B. Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 418, 89–92 (2002). This study revealed capacitance steps of small clear vesicles and showed that they undergo kiss-and-run by forming much smaller fusion pores.

    Article  CAS  PubMed  Google Scholar 

  5. Breckenridge, L.J. & Almers, W. Currents through the fusion pore that forms during exocytosis of a secretory granule. Nature 328, 814–817 (1987). The first measurement of fusion pore conductance gave a value in the range of ion-channel conductances.

    Article  CAS  PubMed  Google Scholar 

  6. Alvarez de Toledo, G., Fernandez-Chacon, R. & Fernandez, J.M. Release of secretory products during transient vesicle fusion. Nature 363, 554–558 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Chow, R.H., von Rüden, L. & Neher, E. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356, 60–63 (1992). This study showed that the contents of a vesicle can trickle out of a fusion pore before full fusion.

    Article  CAS  PubMed  Google Scholar 

  8. Jankowski, J.A., Schroeder, T.J., Ciolkowski, E.L. & Wightman, R.M. Temporal characteristics of quantal secretion of catecholamines from adrenal medullary cells. J. Biol. Chem. 268, 14694–14700 (1993).

    CAS  PubMed  Google Scholar 

  9. Han, X. & Jackson, M.B. Structural transitions in the synaptic SNARE complex during Ca2+-triggered exocytosis. J. Cell Biol. 172, 281–293 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, Z. & Jackson, M.B. Temperature dependence of fusion kinetics and fusion pores in Ca2+-triggered exocytosis from PC12 cells. J. Gen. Physiol. 131, 117–124 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Spruce, A.E., Breckenridge, L.J., Lee, A.K. & Almers, W. Properties of the fusion pore that forms during exocytosis of a mast cell secretory granule. Neuron 4, 643–654 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, Z., Misler, S. & Chow, R.H. Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells. Biophys. J. 70, 1543–1552 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ales, E. et al. High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism. Nat. Cell Biol. 1, 40–44 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Neher, E. & Marty, A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 79, 6712–6716 (1982). Besides opening up the study of exocytosis to electrical measurements, this paper was the first report of capacitance flickers, one of the hallmarks of kiss-and-run.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fernandez, J.M., Neher, E. & Gomperts, B.D. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 312, 453–455 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Lollike, K., Borregaard, N. & Lindau, M. The exocytotic fusion pore of small granules has a conductance similar to an ion channel. J. Cell Biol. 129, 99–104 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. He, L., Wu, X.-S., Mohan, R. & Wu, L.-G. Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444, 102–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, C.T. et al. Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature 424, 943–947 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, C.T., Bai, J., Chang, P.Y., Chapman, E.R. & Jackson, M.B. Synaptotagmin-Ca2+ triggers two sequential steps in regulated exocytosis in rat PC12 cells: fusion pore opening and fusion pore dilation. J. Physiol. (Lond.) 570, 295–307 (2006).

    Article  CAS  Google Scholar 

  20. Meldolesi, J. & Ceccarelli, B. Exocytosis and membrane recycling. Phil. Trans. R. Soc. Lond. B 296, 55–65 (1981).

    Article  CAS  Google Scholar 

  21. Valtorta, F., Meldolesi, J. & Fesce, R. Synaptic vesicles: is kissing a matter of competence? Trends Cell Biol. 11, 324–328 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Jackson, M.B. & Chapman, E.R. Fusion pores and fusion machines in Ca2+-triggered exocytosis. Annu. Rev. Biophys. Biomol. Struct. 35, 135–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Kozlov, M.M., Leikin, S.L., Chernomordik, L.V., Markin, V.S. & Chizmadzhev, Y.A. Stalk mechanism of vesicle fusion. Intermixing of aqueous contents. Eur. Biophys. J. 17, 121–129 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Chanturiya, A., Chernomordik, L.V. & Zimmerberg, J. Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers. Proc. Natl. Acad. Sci. USA 94, 14423–14428 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, J. & Lentz, B.R. Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion. Biochemistry 36, 6251–6259 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, L. & Huang, H.W. Observation of a membrane fusion intermediate structure. Science 297, 1877–1879 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Xu, Y., Zhang, F., Su, Z., McNew, J.A. & Shin, Y.K. Hemifusion in SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 12, 417–422 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Yoon, T.Y., Okumus, B., Zhang, F., Shin, Y.K. & Ha, T. Multiple intermediates in SNARE-induced membrane fusion. Proc. Natl. Acad. Sci. USA 103, 19731–19736 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abdulreda, M.H., Bhalla, A., Chapman, E.R. & Moy, V.T. Atomic force microscope spectroscopy reveals a hemifusion intermediate during soluble N-ethylmaleimide-sensitive factor-attachment protein receptors-mediated membrane fusion. Biophys. J. 94, 648–655 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, T., Wang, T., Chapman, E.R. & Weisshaar, J.C. Productive hemifusion intermediates in fast vesicle fusion driven by neuronal SNAREs. Biophys. J. 94, 1303–1314 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Jun, Y. & Wickner, W. Assays of vacuole fusion resolve the stages of docking, lipid mixing, and content mixing. Proc. Natl. Acad. Sci. USA 104, 13010–13015 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reese, C., Heise, F. & Mayer, A. Trans-SNARE pairing can precede a hemifusion intermediate in intracellular membrane fusion. Nature 436, 410–414 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Reese, C. & Mayer, A. Transition from hemifusion to pore opening is rate limiting for vacuole membrane fusion. J. Cell Biol. 171, 981–990 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Giraudo, C.G. et al. SNAREs can promote complete fusion and hemifusion as alternative outcomes. J. Cell Biol. 170, 249–260 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wong, J.L., Koppel, D.E., Cowan, A.E. & Wessel, G.M. Membrane hemifusion is a stable intermediate of exocytosis. Dev. Cell 12, 653–659 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chernomordik, L.V. & Kozlov, M.M. Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 72, 175–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Cohen, F.S. & Melikyan, G.B. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol. 199, 1–14 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Kemble, G.W., Danieli, T. & White, J.M. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell 76, 383–391 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Nussler, F., Clague, M.J. & Herrmann, A. Meta-stability of the hemifusion intermediate induced by glycosylphosphatidylinositol-anchored influenza hemagglutinin. Biophys. J. 73, 2280–2291 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Markosyan, R.M., Cohen, F.S. & Melikyan, G.B. The lipid-anchored ectodomain of influenza virus hemagglutinin (GPI-HA) is capable of inducing nonenlarging fusion pores. Mol. Biol. Cell 11, 1143–1152 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tse, F.W., Iwata, A. & Almers, W. Membrane flux through the pore formed by a fusogenic viral envelope protein during cell fusion. J. Cell Biol. 121, 543–552 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Zimmerberg, J., Blumenthal, R., Curran, M., Sarker, D. & Morris, S. Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion. J. Cell Biol. 127, 1885–1894 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Chernomordik, L.V., Frolov, V.A., Leikina, E., Bronk, P. & Zimmerberg, J. The pathway of membrane fusion catalyzed by influenza hemagglutinin: restriction of lipids, hemifusion, and lipidic fusion pore formation. J. Cell Biol. 140, 1369–1382 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lollike, K., Borregaard, N. & Lindau, M. Capacitance flickers and pseudoflickers of small granules, measured in the cell-attached configuration. Biophys. J. 75, 53–59 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Monck, J.R., Alvarez de Toledo, G. & Fernandez, J.M. Tension in secretory granule membranes causes extensive membrane transfer through the exocytotic fusion pore. Proc. Natl. Acad. Sci. USA 87, 7804–7808 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oberhauser, A.F., Monck, J.R. & Fernandez, J.M. Events leading to the opening and closing of the exocytotic fusion pore have markedly different temperature dependencies. Kinetic analysis of single fusion events in patch-clamped mouse mast cells. Biophys. J. 61, 800–809 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taraska, J.W. & Almers, W. Bilayers merge even when exocytosis is transient. Proc. Natl. Acad. Sci. USA 101, 8780–8785 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Richards, D.A., Bai, J. & Chapman, E.R. Two modes of exocytosis at hippocampal synapses revealed by rate of FM1-43 efflux from individual vesicles. J. Cell Biol. 168, 929–939 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Han, X., Wang, C.T., Bai, J., Chapman, E.R. & Jackson, M.B. Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304, 289–292 (2004). The first study to locate a molecule, syntaxin, as a structural component of a fusion pore in Ca2+-triggered exocytosis.

    Article  CAS  PubMed  Google Scholar 

  51. Han, X. & Jackson, M.B. Electrostatic interactions between the syntaxin membrane anchor and neurotransmitter passing through the fusion pore. Biophys. J. 88, L20–L22 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barclay, J.W., Aldea, M., Craig, T.J., Morgan, A. & Burgoyne, R.D. Regulation of the fusion pore conductance during exocytosis by cyclin-dependent kinase 5. J. Biol. Chem. 279, 41495–41503 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Sorensen, J.B. et al. Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 114, 75–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Sorensen, J.B. et al. Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J. 25, 955–966 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kesavan, J., Borisovska, M. & Bruns, D. v-SNARE actions during Ca2+-triggered exocytosis. Cell 131, 351–363 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Edwardson, J.M. et al. Expression of mutant huntingtin blocks exocytosis in PC12 cells by depletion of complexin II. J. Biol. Chem. 278, 30849–30853 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Hatsuzawa, K., Lang, T., Fasshauer, D., Bruns, D. & Jahn, R. The R-SNARE motif of tomosyn forms SNARE core complexes with syntaxin 1 and SNAP-25 and down-regulates exocytosis. J. Biol. Chem. 278, 31159–31166 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Yizhar, O. et al. Tomosyn inhibits priming of large dense-core vesicles in a calcium-dependent manner. Proc. Natl. Acad. Sci. USA 101, 2578–2583 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Borisovska, M. et al. v-SNAREs control exocytosis of vesicles from priming to fusion. EMBO J. 24, 2114–2126 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, C.-T. et al. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science 294, 1111–1115 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Bai, J., Wang, C.T., Richards, D.A., Jackson, M.B. & Chapman, E.R. Fusion pore dynamics are regulated by synaptotagmin·t-SNARE interactions. Neuron 41, 929–942 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Constable, J.R., Graham, M.E., Morgan, A. & Burgoyne, R.D. Amisyn regulates exocytosis and fusion pore stability by both syntaxin-dependent and syntaxin-independent mechanisms. J. Biol. Chem. 280, 31615–31623 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Sombers, L.A. et al. The effects of vesicular volume on secretion through the fusion pore in exocytotic release from PC12 cells. J. Neurosci. 24, 303–309 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fisher, R.J., Pevsner, J. & Burgoyne, R.D. Control of fusion pore dynamics during exocytosis by Munc18. Science 291, 875–878 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Barclay, J.W. Munc-18-1 regulates the initial release rate of exocytosis. Biophys. J. 94, 1084–1093 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Graham, M.E. & Burgoyne, R.D. Comparison of cysteine string protein (Csp) and mutant α-SNAP overexpression reveals a role for Csp in late steps of membrane fusion in dense-core granule exocytosis in adrenal chromaffin cells. J. Neurosci. 20, 1281–1289 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Archer, D.A., Graham, M.E. & Burgoyne, R.D. Complexin regulates the closure of the fusion pore during regulated vesicle exocytosis. J. Biol. Chem. 277, 18249–18252 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Neco, P. et al. Myosin II contributes to fusion pore expansion during exocytosis. J. Biol. Chem. 283, 10949–10957 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Granseth, B., Odermatt, B., Royle, S.J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Balaji, J. & Ryan, T.A. Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc. Natl. Acad. Sci. USA 104, 20576–20581 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gandhi, S.P. & Stevens, C.F. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423, 607–613 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Wienisch, M. & Klingauf, J. Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical. Nat. Neurosci. 9, 1019–1027 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Granseth, B., Odermatt, B., Royle, S.J. & Lagnado, L. Clathrin-mediated endocytosis the physiological mechanism of vesicle retrieval at hippocampal synapses. J. Physiol. (Lond.) 585, 681–686 (2007).

    Article  CAS  Google Scholar 

  74. Koenig, J.H. & Ikeda, K. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci. 9, 3844–3860 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Koenig, J.H., Saito, K. & Ikeda, K. Reversible control of synaptic transmission in a single gene mutant of Drosophila melanogaster . J. Cell Biol. 96, 1517–1522 (1983).

    Article  CAS  PubMed  Google Scholar 

  76. Poskanzer, K.E., Marek, K.W., Sweeney, S.T. & Davis, G.W. Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo . Nature 426, 559–563 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Pawlu, C., DeAntonio, A. & Heckmann, M. Postfusional control of quantal current shape. Neuron 42, 607–618 (2004). This study suggested that fusion pores could shape a synaptic current.

    Article  CAS  PubMed  Google Scholar 

  78. Aravanis, A.M., Pyle, J.L. & Tsien, R.W. Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423, 643–647 (2003). The first clear evidence for kiss-and-run at synapses.

    Article  CAS  PubMed  Google Scholar 

  79. Fulop, T., Radabaugh, S. & Smith, C. Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. J. Neurosci. 25, 7324–7332 (2005). This study suggested that fusion pores, and the mode of release, can select different molecules within a vesicle for exocytosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Khanin, R., Parnas, H. & Segel, L. Diffusion cannot govern the discharge of neurotransmitter in fast synapses. Biophys. J. 67, 966–972 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Clements, J.D. Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci. 19, 163–171 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Stiles, J.R., Van Helden, D., Bartol, T.M., Salpeter, E.E. & Salpeter, M.M. Miniature endplate current rise times < 100 μs from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. Proc. Natl. Acad. Sci. USA 93, 5747–5752 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jackson, M.B. In search of the fusion pore of exocytosis. Biophys. Chem. 126, 201–208 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants to M.B.J. (NS30016 and NS44057) and by US National Institutes of Health (National Institute of General Medical Sciences GM56827 and National Institute of Mental Health MH61876) and American Heart Association (0440168N) grants to E.R.C. E.R.C. is supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meyer B Jackson or Edwin R Chapman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, M., Chapman, E. The fusion pores of Ca2+-triggered exocytosis. Nat Struct Mol Biol 15, 684–689 (2008). https://doi.org/10.1038/nsmb.1449

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1449

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing