Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the bacteriophage T4 DNA adenine methyltransferase

Abstract

DNA-adenine methylation at certain GATC sites plays a pivotal role in bacterial and phage gene expression as well as bacterial virulence. We report here the crystal structures of the bacteriophage T4Dam DNA adenine methyltransferase (MTase) in a binary complex with the methyl-donor product S-adenosyl-L-homocysteine (AdoHcy) and in a ternary complex with a synthetic 12-bp DNA duplex and AdoHcy. T4Dam contains two domains: a seven-stranded catalytic domain that harbors the binding site for AdoHcy and a DNA binding domain consisting of a five-helix bundle and a β-hairpin that is conserved in the family of GATC-related MTase orthologs. Unexpectedly, the sequence-specific T4Dam bound to DNA in a nonspecific mode that contained two Dam monomers per synthetic duplex, even though the DNA contains a single GATC site. The ternary structure provides a rare snapshot of an enzyme poised for linear diffusion along the DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure-based sequence alignment of the selected Dam MTase orthologs.
Figure 2: The binary structure of T4Dam–AdoHcy.
Figure 3: The loose ternary structure of T4Dam–DNA–AdoHcy.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lacks, S. & Greenberg, B. Complementary specificity of restriction endonucleases of Diplococcus pneumoniae with respect to DNA methylation. J. Mol. Biol. 114, 153–168 (1977).

    Article  CAS  Google Scholar 

  2. Hattman, S., Brooks, J.E. & Masurekar, M. Sequence specificity of the P1 modification methylase (M.Eco P1) and the DNA methylase (M.Eco dam) controlled by the Escherichia coli dam gene. J. Mol. Biol. 126, 367–380 (1978).

    Article  CAS  Google Scholar 

  3. Bale, A., d'Alarcao, M. & Marinus, M.G. Characterization of DNA adenine methylation mutants of Escherichia coli K12. Mutat. Res. 59, 157–165 (1979).

    Article  CAS  Google Scholar 

  4. Julio, S.M. et al. DNA adenine methylase is essential for viability and plays a role in the pathogenesis of Yersinia pseudotuberculosis and Vibrio cholerae. Infect. Immun. 69, 7610–7615 (2001).

    Article  CAS  Google Scholar 

  5. Garcia-Del Portillo, F., Pucciarelli, M.G. & Casadesus, J. DNA adenine methylase mutants of Salmonella typhimurium show defects in protein secretion, cell invasion, and M cell cytotoxicity. Proc. Natl. Acad. Sci. USA 96, 11578–11583 (1999).

    Article  CAS  Google Scholar 

  6. Heithoff, D.M., Sinsheimer, R.L., Low, D.A. & Mahan, M.J. An essential role for DNA adenine methylation in bacterial virulence. Science 284, 967–970 (1999).

    Article  CAS  Google Scholar 

  7. Heithoff, D.M. et al. Salmonella DNA adenine methylase mutants confer cross-protective immunity. Infect. Immun. 69, 6725–6730 (2001).

    Article  CAS  Google Scholar 

  8. Dueger, E.L., House, J.K., Heithoff, D.M. & Mahan, M.J. Salmonella DNA adenine methylase mutants elicit protective immune responses to homologous and heterologous serovars in chickens. Infect. Immun. 69, 7950–7954 (2001).

    Article  CAS  Google Scholar 

  9. Dueger, E.L., House, J.K., Heithoff, D.M. & Mahan, M.J. Salmonella DNA adenine methylase mutants prevent colonization of newly hatched chickens by homologous and heterologous serovars. Int. J. Food Microbiol. 80, 153–159 (2003).

    Article  CAS  Google Scholar 

  10. Urieli-Shoval, S., Gruenbaum, Y. & Razin, A. Sequence and substrate specificity of isolated DNA methylases from Escherichia coli C. J. Bacteriol. 153, 274–280 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Messer, W. & Noyer-Weidner, M. Timing and targeting: the biological functions of Dam methylation in E. coli. Cell 54, 735–737 (1988).

    Article  CAS  Google Scholar 

  12. Modrich, P. Methyl-directed DNA mismatch correction. J. Biol. Chem. 264, 6597–6600 (1989).

    CAS  PubMed  Google Scholar 

  13. Yang, W. Structure and function of mismatch repair proteins. Mutat. Res. 460, 245–256 (2000).

    Article  CAS  Google Scholar 

  14. Lu, M., Campbell, J.L., Boye, E. & Kleckner, N. SeqA: a negative modulator of replication initiation in E. coli. Cell 77, 413–426 (1994).

    Article  CAS  Google Scholar 

  15. Kang, S., Lee, H., Han, J.S. & Hwang, D.S. Interaction of SeqA and Dam methylase on the hemimethylated origin of Escherichia coli chromosomal DNA replication. J. Biol. Chem. 274, 11463–11468 (1999).

    Article  CAS  Google Scholar 

  16. Guarne, A., Zhao, Q., Ghirlando, R. & Yang, W. Insights into negative modulation of E. coli replication initiation from the structure of SeqA-hemimethylated DNA complex. Nat. Struct. Biol. 9, 839–843 (2002).

    CAS  PubMed  Google Scholar 

  17. Oshima, T. et al. Genome-wide analysis of deoxyadenosine methyltransferase-mediated control of gene expression in Escherichia coli. Mol. Microbiol. 45, 673–695 (2002).

    Article  CAS  Google Scholar 

  18. Løbner-Olesen, A., Marinus, M.G. & Hansen, F.G. Role of SeqA and Dam in Escherichia coli gene expression: a global/microarray analysis. Proc. Natl. Acad. Sci. USA 100, 4672–4677 (2003).

    Article  Google Scholar 

  19. Julio, S.M., Heithoff, D.M., Sinsheimer, R.L., Low, D.A. & Mahan, M.J. DNA adenine methylase overproduction in Yersinia pseudotuberculosis alters YopE expression and secretion and host immune responses to infection. Infect. Immun. 70, 1006–1009 (2002).

    Article  CAS  Google Scholar 

  20. Hattman, S. Unusual transcriptional and translational regulation of the bacteriophage Mu mom operon. Pharmacol. Ther. 84, 367–388 (1999).

    Article  CAS  Google Scholar 

  21. Malone, T., Blumenthal, R.M. & Cheng, X. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J. Mol. Biol. 253, 618–632 (1995).

    Article  CAS  Google Scholar 

  22. Klimasauskas, S., Kumar, S., Roberts, R.J. & Cheng, X. HhaI methyltransferase flips its target base out of the DNA helix. Cell 76, 357–369 (1994).

    Article  CAS  Google Scholar 

  23. Goedecke, K., Pignot, M., Goody, R.S., Scheidig, A.J. & Weinhold, E. Structure of the N6-adenine DNA methyltransferase M.TaqI in complex with DNA and a cofactor analog. Nat. Struct. Biol. 8, 121–125 (2001).

    Article  CAS  Google Scholar 

  24. Reinisch, K.M., Chen, L., Verdine, G.L. & Lipscomb, W.N. The crystal structure of HaeIII methyltransferase covalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell 82, 143–153 (1995).

    Article  CAS  Google Scholar 

  25. Gong, W., O'Gara, M., Blumenthal, R.M. & Cheng, X. Structure of PvuII DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment. Nucleic Acids Res. 25, 2702–2715 (1997).

    Article  CAS  Google Scholar 

  26. Tran, P.H., Korszun, Z.R., Cerritelli, S., Springhorn, S.S. & Lacks, S.A. Crystal structure of the DpnM DNA adenine methyltransferase from the DpnII restriction system of streptococcus pneumoniae bound to S-adenosylmethionine. Structure 6, 1563–1575 (1998).

    Article  CAS  Google Scholar 

  27. Scavetta, R.D. et al. Structure of RsrI methyltransferase, a member of the N6-adenine beta class of DNA methyltransferases. Nucleic Acids Res. 28, 3950–3961 (2000).

    Article  CAS  Google Scholar 

  28. Schubert, H.L., Blumenthal, R.M. & Cheng, X. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem. Sci. 28, 329–335 (2003).

    Article  CAS  Google Scholar 

  29. Beck, C. & Jeltsch, A. Probing the DNA interface of the EcoRV DNA-(adenine-N6)-methyltransferase by site-directed mutagenesis, fluorescence spectroscopy, and UV cross-linking. Biochemistry 41, 14103–14110 (2002).

    Article  CAS  Google Scholar 

  30. Miner, Z., Schlagman, S.L. & Hattman, S. Single amino acid changes that alter the DNA sequence specificity of the DNA-[N6-adenine] methyltransferase (Dam) of bacteriophage T4. Nucleic Acids Res. 17, 8149–8157 (1989).

    Article  CAS  Google Scholar 

  31. Hattman, S. DNA methylation of T-even bacteriophages and of their nonglucosylated mutants: its role in P1-directed restriction. Virology 42, 359–367 (1970).

    Article  CAS  Google Scholar 

  32. Minko, I., Hattman, S., Lloyd, R.S. & Kossykh, V. Methylation by a mutant T2 DNA [N(6)-adenine] methyltransferase expands the usage of RecA-assisted endonuclease (RARE) cleavage. Nucleic Acids Res. 29, 1484–1490 (2001).

    Article  CAS  Google Scholar 

  33. Kossykh, V.G., Schlagman, S.L. & Hattman, S. Conserved sequence motif DPPY in region IV of the phage T4 Dam DNA-[N6-adenine]-methyltransferase is important for S-adenosyl-L-methionine binding. Nucleic Acids Res. 21, 4659–4662 (1993).

    Article  CAS  Google Scholar 

  34. Schluckebier, G., O'Gara, M., Saenger, W. & Cheng, X. Universal catalytic domain structure of AdoMet-dependent methyltransferases. J. Mol. Biol. 247, 16–20 (1995).

    Article  CAS  Google Scholar 

  35. Tuzikov, F.V., Tuzikova, N.A., Naumochkin, A.N., Zinov'ev, V.V. & Malygin, E.G. Fluorescence quenching study of the equilibrium binding of phage T4 DamDNA-[N6-adenine]-methyltransferase with substrates and ligands. Mol. Biol. (Mosk) 31, 73–76 (1997).

    CAS  Google Scholar 

  36. Roth, M. & Jeltsch, A. Changing the target base specificity of the EcoRV DNA methyltransferase by rational de novo protein-design. Nucleic Acids Res. 29, 3137–3144 (2001).

    Article  CAS  Google Scholar 

  37. Malygin, E.G. et al. A dual role for substrate S-adenosyl-L-methionine in the methylation reaction with bacteriophage T4 Dam DNA-[N6-adenine]-methyltransferase. Nucleic Acids Res. 29, 2361–2369 (2001).

    Article  CAS  Google Scholar 

  38. Murphy, F.V.T. & Churchill, M.E. Nonsequence-specific DNA recognition: a structural perspective. Structure 8, R83–R89 (2000).

    Article  CAS  Google Scholar 

  39. Lee, B. & Richards, F.M. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  40. Kleywegt, G.J. & Jones, T.A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr. D 50, 178–185 (1994).

    Article  CAS  Google Scholar 

  41. Urig, S. et al. The Escherichia coli dam DNA methyltransferase modifies DNA in a highly processive reaction. J. Mol. Biol. 319, 1085–1096 (2002).

    Article  CAS  Google Scholar 

  42. Zinoviev, V.V., Evdokimov, A.A., Malygin, E.G., Schlagman, S.L. & Hattman, S. Bacteriophage T4 Dam DNA-[N6-adenine]-methyltransferase: processivity and orientation to the methylation target. J. Biol. Chem. 278, 7829–7833 (2002).

    Article  Google Scholar 

  43. Evdokimov, A.A., Zinoviev, V.V., Malygin, E.G., Schlagman, S.L. & Hattman, S. Bacteriophage T4 Dam DNA-[N6-adenine]methyltransferase. Kinetic evidence for a catalytically essential conformational change in the ternary complex. J. Biol. Chem. 277, 279–286 (2002).

    Article  CAS  Google Scholar 

  44. Malygin, E.G., Lindstrom, W.M., Jr., Schlagman, S.L., Hattman, S. & Reich, N.O. Pre-steady state kinetics of bacteriophage T4 Dam DNA-[N(6)-adenine] methyltransferase: interaction with native (GATC) or modified sites. Nucleic Acids Res. 28, 4207–4211 (2000).

    Article  CAS  Google Scholar 

  45. Breyer, W.A. & Matthews, B.W. A structural basis for processivity. Protein Sci. 10, 1699–1711 (2001).

    Article  CAS  Google Scholar 

  46. Kossykh, V.G., Schlagman, S.L. & Hattman, S. Phage T4 DNA [N6-adenine]methyltransferase. Overexpression, purification, and characterization. J. Biol. Chem. 270, 14389–14393 (1995).

    Article  CAS  Google Scholar 

  47. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  48. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  49. Furey, W. & Swaminathan, S. PHASES-95: A program package for processing and analyzing diffraction data from macromolecules. Methods Enzymol. 277, 590–620 (1997).

    Article  CAS  Google Scholar 

  50. Abrahams, J.P. et al. The structure of bovine F1-ATPase complexed with the peptide antibiotic efrapeptin. Proc. Natl. Acad. Sci. USA 93, 9420–9424 (1996).

    Article  CAS  Google Scholar 

  51. Cowtan, K.D. & Zhang, K.Y. Density modification for macromolecular phase improvement. Prog. Biophys. Mol. Biol. 72, 245–270 (1999).

    Article  CAS  Google Scholar 

  52. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  53. Navaza, J. Implementation of molecular replacement in AMoRe. Acta Crystallogr. D 57, 1367–1372 (2001).

    Article  CAS  Google Scholar 

  54. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  55. Carson, M. Ribbons. Methods Enzymol. 227, 493–505 (1997).

    Article  Google Scholar 

  56. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  57. Miner, Z. & Hattman, S. Molecular cloning, sequencing, and mapping of the bacteriophage T2 dam gene. J. Bacteriol. 170, 5177–5184 (1988).

    Article  CAS  Google Scholar 

  58. Kossykh, V.G., Schlagman, S.L. & Hattman, S. Comparative studies of the phage T2 and T4 DNA (N6-adenine)methyltransferases: amino acid changes that affect catalytic activity. J. Bacteriol. 179, 3239–3243 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank beamline staff for help with X-ray data collection at beamlines X12C, X25 and X26C in the facilities of the National Synchrotron Light Source, Brookhaven National Laboratory, R.M. Blumenthal (Medical College of Ohio) for comments and M. Churchill (University of Colorado) for discussion. These studies were supported in part by US Public Health Services grants to S.H and X.C. and the Georgia Research Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Cheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Horton, J., Zhou, L. et al. Structure of the bacteriophage T4 DNA adenine methyltransferase. Nat Struct Mol Biol 10, 849–855 (2003). https://doi.org/10.1038/nsb973

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb973

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing