Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural insights into the catalytic mechanism of cyclophilin A

This article has been updated

Abstract

Cyclophilins constitute a ubiquitous protein family whose functions include protein folding, transport and signaling. They possess both sequence-specific binding and proline cis-trans isomerase activities, as exemplified by the interaction between cyclophilin A (CypA) and the HIV-1 CA protein. Here, we report crystal structures of CypA in complex with HIV-1 CA protein variants that bind preferentially with the substrate proline residue in either the cis or the trans conformation. Cis- and trans-Pro substrates are accommodated within the enzyme active site by rearrangement of their N-terminal residues and with minimal distortions in the path of the main chain. CypA Arg55 guanidinium group probably facilitates catalysis by anchoring the substrate proline oxygen and stabilizing sp3 hybridization of the proline nitrogen in the transition state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of CypA–CAN complexes.
Figure 2: Comparison of CAN loop conformations.
Figure 3: Proposed reaction pathway.
Figure 4: Superposition of CypA complexes with the cis conformations of CAN and Suc-Ala-Ala-Pro-Phe-NA (ref. 23).

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 12 May 2003

    footnote in HTML, errata last page of AOP PDF

Notes

  1. Note: In the version of this article initially published online, the sequence for the model tetrapeptide substrate contains a mistake. This incorrect sequence is listed in two places, on page 4 line 21 and line 25 of the right hand column. The correct sequence should be Suc-Ala-Phe-Pro-Phe-NA. This mistake has been corrected for the HTML and print versions of the article.

References

  1. Fischer, G., Whittmann-Liebold, B., Lang, K., Kiefhaber, T. & Schmid, F.X. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337, 476–478 (1989).

    Article  CAS  Google Scholar 

  2. Takahashi, N., Hayano, T. & Suzuki, M. Peptidyl-prolyl cis-trans isomerase is the cyclosporin A–binding protein cyclophilin. Nature 337, 473–475 (1989).

    Article  CAS  Google Scholar 

  3. Schmid, F.X., Mayr, L.M., Mücke, M. & Schönbrunner, E.R. Prolyl isomerases: role in protein folding. Adv. Protein Chem. 44, 25–66 (1993).

    Article  CAS  Google Scholar 

  4. Kern, G., Kern, D., Schmid, F.X. & Fischer, G. A kinetic analysis of the folding of human carbonic anhydrase II and its catalysis by cyclophilin. J. Biol. Chem. 270, 740–745 (1995).

    Article  Google Scholar 

  5. Kern, D., Kern, G., Scherer, G., Fischer, G. & Drakenberg, T. Kinetic analysis of cyclophilin-catalyzed prolyl cis/trans isomerization by dynamic NMR spectroscopy. Biochemistry 34, 13594–13602 (1995).

    Article  CAS  Google Scholar 

  6. Gothel, S.F. & Marahiel, M.A. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell. Mol. Life Sci. 55, 423–436 (1999).

    Article  CAS  Google Scholar 

  7. Luban, J., Bossolt, K.L., Franke, E.K., Kalpana, G.V. & Goff, S.P. Human immunodeficiency virus type 1 gag protein binds to cyclophilins A and B. Cell 73, 1067–1078 (1993).

    Article  CAS  Google Scholar 

  8. Franke, E.K., Yuan, H.E.H. & Luban, J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372, 359–362 (1994).

    Article  CAS  Google Scholar 

  9. Thali, M. et al. Functional association of cyclophilin A with HIV-1 virions. Nature 372, 363–365 (1994).

    Article  CAS  Google Scholar 

  10. Braaten, D., Franke, E.K. & Luban, J. Cyclophilin A is required for the replication of group M human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus SIVCPZ GAB but not group O HIV-1 or other primate immunodeficiency viruses. J. Virol. 70, 4220–4227 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wiegers, K. & Kräusslich, H.-G. Differential dependence of the infectivity of HIV-1 group O isolates on the cellular protein cyclophilin A. Virology 294, 289–295 (2002).

    Article  CAS  Google Scholar 

  12. Saphire, A.C., Bobardt, M.D. & Gallay, P.A. Trans-complementation rescue of cyclophilin A-deficient viruses reveals that the requirement for cyclophilin A in human immunodeficiency virus type 1 replication is independent of its isomerase activity. J. Virol. 76, 2255–2262 (2002).

    Article  CAS  Google Scholar 

  13. Bosco, D.A., Eisenmesser, E.Z., Pochapsky, S., Sundquist, W.I. & Kern, D. Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A. Proc. Natl. Acad. Sci. USA 99, 5247–5252 (2002).

    Article  CAS  Google Scholar 

  14. Brazin, K.N., Mallis, R.J., Fulton, D.B. & Andreotti, A.H. Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A. Proc. Natl. Acad. Sci. USA 99, 1899–1904 (2002).

    Article  CAS  Google Scholar 

  15. Arévalo-Rodríguez, M., Cardenas, M.E., Wu, X., Hanes, S.D. & Heitman, J. Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3–Rpd3 histone deacetylase. EMBO J. 19, 3739–3749 (2000).

    Article  Google Scholar 

  16. Schmid, F.X. Prolyl isomerases. Adv. Prot. Chem. 59, 243–282 (2002).

    CAS  Google Scholar 

  17. Gamble, T.R. et al. Crystal structure of human cyclophilin A bound to the amino- terminal domain of HIV-1 capsid. Cell 87, 1285–1294 (1996).

    Article  CAS  Google Scholar 

  18. Yoo, S. et al. Molecular recognition in the HIV-1 capsid/cyclophilin A complex. J. Mol. Biol. 269, 780–795 (1997).

    Article  CAS  Google Scholar 

  19. Zhao, Y., Chen, Y., Schutkowski, M., Fischer, G. & Ke, H. Cyclophilin A complexed with a fragment of HIV-1 gag protein: insights into HIV-1 infectious activity. Structure 5, 139–146 (1997).

    Article  CAS  Google Scholar 

  20. Vajdos, F., Yoo, S.-H., Houseweart, M., Sundquist, W.I. & Hill, C.P. Crystal structure of cyclophilin A complexed with a binding site peptide from the HIV-1 capsid protein. Protein Sci. 6, 2297–2307 (1997).

    Article  CAS  Google Scholar 

  21. Kallen, J. et al. Structure of human cyclophilin and its binding site for cyclosporin A determined by X-ray crystallography and NMR spectroscopy. Nature 353, 276–279 (1991).

    Article  CAS  Google Scholar 

  22. Ke, H., Mayrose, D. & Cao, W. Crystal structure of cyclophilin A complexed with substrate Ala-Pro suggests a solvent-assisted mechanism of cis-trans isomerization. Proc. Natl. Acad. Sci. USA 90, 3324–3328 (1993).

    Article  CAS  Google Scholar 

  23. Zhao, Y. & Ke, H. Crystal structure implies that cyclophilin predominantly catalyzes the trans to cis isomerization. Biochemistry 35, 7356–7361 (1996).

    Article  CAS  Google Scholar 

  24. Zhao, Y. & Ke, H. Mechanistic implications of crystal structures of the cyclophilin–dipeptide complexes. Biochemistry 35, 7362–7368 (1996).

    Article  CAS  Google Scholar 

  25. Eisenmesser, E.Z., Bosco, D.A., Akke, M. & Kern, D. Enzyme dynamics during catalysis. Science 295, 1520–1523 (2002).

    Article  CAS  Google Scholar 

  26. Gitti, R.K. et al. Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273, 231–235 (1996).

    Article  CAS  Google Scholar 

  27. Vitagliano, L., Berisio, R., Mastrangelo, A., Mazzarella, L. & Zagari, A. Preferred proline puckerings in cis and trans peptide groups: implications for collagen stability. Protein Sci. 10, 2627–2632 (2001).

    Article  CAS  Google Scholar 

  28. Zydowsky, L.D. et al. Active site mutants of human cyclophilin A separate peptidyl-prolyl isomerase activity from cyclosporin A binding and calcineurin inhibition. Protein Sci. 1, 1092–1099 (1992).

    Article  CAS  Google Scholar 

  29. Stein, R.L. Mechanism of enzymatic and nonenzymatic prolyl cis-trans isomerization. Adv. Protein Chem. 44, 1–24 (1993).

    Article  CAS  Google Scholar 

  30. Fischer, S., Michnick, S. & Karplus, M. A mechanism for rotamase catalysis by the FK506 binding protein (FKBP). Biochemistry 32, 13830–13837 (1993).

    Article  CAS  Google Scholar 

  31. Hur, S. & Bruice, T.C. The mechanism of cis-trans isomerization of prolyl peptides by cyclophilin. J. Am. Chem. Soc. 124, 7303–7313 (2002).

    Article  CAS  Google Scholar 

  32. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  33. Leslie, A.G.W. Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography Vol. 26 (Daresbury Laboratory, Warrington, 1992).

    Google Scholar 

  34. Collaborative Computational Project, Number 4. CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  35. Brünger, A.T. X-PLOR Version 3.843: A System for X-ray Crystallography and NMR (Yale University, New Haven, Connecticut, 1996).

    Google Scholar 

  36. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  37. Lamzin, V.S. & Wilson, K.S. Automated building of solvent structure combined with standard restrained refinement. Methods Enzymol. 277, 269–305 (1997).

    Article  CAS  Google Scholar 

  38. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  39. Murshudov, G.N., Vagin, A.A., Lebedev, A., Wilson, K.S. & Dodson, E.J. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crysallogr. D 55, 247–255 (1999).

    Article  CAS  Google Scholar 

  40. Kraulis, P.J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  41. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  42. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  43. Morris, A.L., MacArthur, M.W., Hutchinson, E.G. & Thornton, J.M. Stereochemical quality of protein structure coordinates. Proteins 12, 345–364 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.R. Davis, S.L. Alam, T.E. Cheatham III and members of the Hill and Sundquist labs for comments on this manuscript; H. Ke for providing processed structure factor amplitudes for the CypA–tetrapeptide structure; H.L. Schubert for help with refinement; and G.N. Murshudov for modifying REFMAC5 to allow the refinement of peptide structures containing prolines with partial cis and partial trans conformations. Operations of the Advanced Light Source, National Synchrotron Light Source and Stanford Synchrotron Radiation Laboratory are supported by the U.S. Department of Energy, Office of Basic Energy Sciences, and by the National Institutes of Health. This work was supported by NIH grants to W.I.S. and C.P.H.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wesley I Sundquist or Christopher P Hill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, B., Vajdos, F., Li, S. et al. Structural insights into the catalytic mechanism of cyclophilin A. Nat Struct Mol Biol 10, 475–481 (2003). https://doi.org/10.1038/nsb927

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb927

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing