Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin

Abstract

Perfringolysin O (PFO), a cytolytic toxin secreted by pathogenic Clostridium perfringens, forms large pores in cholesterol-containing membranes. Domain 4 (D4) of the protein interacts first with the membrane and is responsible for cholesterol recognition. By using several independent fluorescence techniques, we have determined the topography of D4 in the membrane-inserted oligomeric form of the toxin. Only the short hydrophobic loops at the tip of the D4 β-sandwich are exposed to the bilayer interior, whereas the remainder of D4 projects from the membrane surface and is surrounded by water, making little or no contact with adjacent protein monomers in the oligomer. Thus, a limited interaction of D4 with the bilayer core seems to be sufficient to accomplish cholesterol recognition and initial binding of PFO to the membrane. Furthermore, D4 serves as the fulcrum around which extensive structural changes occur during the formation and insertion of the large transmembrane β-barrel into the bilayer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PFO structure.
Figure 2: D4 probe environments.
Figure 3: D4 topography in the membrane-inserted oligomer.

Similar content being viewed by others

References

  1. Alouf, J.E. & Freer, J.H. The Comprehensive Sourcebook of Bacterial Protein Toxins (Academic Press, London; 1999).

    Google Scholar 

  2. Olofsson, A., Hebert, H. & Thelestam, M. FEBS Lett. 319, 125–127 (1993).

    Article  CAS  Google Scholar 

  3. Tweten, R.K., Parker, M.W. & Johnson, A.E. Curr. Top. Microbiol. Immunol. 257, 15–33 (2001).

    CAS  PubMed  Google Scholar 

  4. Heuck, A.P., Tweten, R.K. & Johnson, A.E. Biochemistry 40, 9065–9073 (2001).

    Article  CAS  Google Scholar 

  5. Iwamoto, M., Ohno-Iwashita, Y. & Ando, S. Eur. J. Biochem. 194, 25–31 (1990).

    Article  CAS  Google Scholar 

  6. Tweten, R.K., Harris, R.W. & Sims, P.J. J. Biol. Chem. 266, 12449–12454 (1991).

    CAS  PubMed  Google Scholar 

  7. Nakamura, M., Sekino, N., Iwamoto, M. & Ohno-Iwashita, Y. Biochemistry 34, 6513–6520 (1995).

    Article  CAS  Google Scholar 

  8. Nakamura, M., Sekino-Suzuki, N., Mitsui, K.-I. & Ohno-Iwashita, Y. J. Biochemistry 123, 1145–1155 (1998).

    Article  CAS  Google Scholar 

  9. Sekino-Suzuki, N., Nakamura, M., Mitsui, K.-I. & Ohno-Iwashita, Y. Eur. J. Biochem. 241, 941–947 (1996).

    Article  CAS  Google Scholar 

  10. Rossjohn, J., Feil, S.C., Mckinstry, W.J., Tweten, R.K. & Parker, M.W. Cell 89, 685–692 (1997).

    Article  CAS  Google Scholar 

  11. Shepard, L.A. et al. Biochemistry 37, 14563–14574 (1998).

    Article  CAS  Google Scholar 

  12. Shatursky, O. et al. Cell 99, 293–299 (1999).

    Article  CAS  Google Scholar 

  13. Heuck, A.P., Hotze, E.M., Tweten, R.K. & Johnson, A.E. Mol. Cell 6, 1233–1242 (2000).

    Article  CAS  Google Scholar 

  14. Hotze, E.M. et al. J. Biol. Chem. 277, 11597–11605 (2002).

    Article  CAS  Google Scholar 

  15. Heuck, A.P. & Johnson, A.E. Cell Biochem. Biophys. 36, 89–102 (2002).

    Article  CAS  Google Scholar 

  16. Crowley, K.S., Liao, S., Worrell, V.E., Reinhart, G.D. & Johnson, A.E. Cell 78, 461–471 (1994).

    Article  CAS  Google Scholar 

  17. Hamman, B.D., Hendershot, L.M. & Johnson, A.E. Cell 92, 747–758 (1998).

    Article  CAS  Google Scholar 

  18. Shepard, L.A., Shatursky, O., Johnson, A.E. & Tweten, R.K. Biochemistry 39, 10284–10293 (2000).

    Article  CAS  Google Scholar 

  19. Hotze, E.M. et al. J. Biol. Chem. 276, 8261–8268 (2001).

    Article  CAS  Google Scholar 

  20. Gilbert, R.J.C. et al. J. Mol. Biol. 284, 1223–1237 (1998).

    Article  CAS  Google Scholar 

  21. Weis, S. & Palmer, M. Biochim. Biophs. Acta 1510, 292–299 (2001).

    Article  CAS  Google Scholar 

  22. Kraulis, P.J. J. Appl. Crystollagr. 26, 283–291 (1993).

    Article  Google Scholar 

  23. Meritt, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  Google Scholar 

  24. Christopher, J.A. SPOCK: the structural properties observation and calculation kit. (Texas A&M University, College Station; 1998).

Download references

Acknowledgements

This work was supported by NIH and by the Robert A. Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur E. Johnson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramachandran, R., Heuck, A., Tweten, R. et al. Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Nat Struct Mol Biol 9, 823–827 (2002). https://doi.org/10.1038/nsb855

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb855

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing