Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A common RNA loop motif as a docking module and its function in the hammerhead ribozyme

Abstract

Here I present a three-dimensional model of a novel element of RNA tertiary structure. A common loop motif composed of adjacent, sheared G·A and A·N non-canonical base pairs is proposed to form long-range tertiary interactions with other RNA residues. The widespread distribution of this G·A/A·N docking module suggests that the putative long-range docking interaction plays an important role in specifying the tertiary structure of large RNAs, and perhaps the quaternary structure of some intermolecular RNA–RNA interactions. Application of this docking module hypothesis to the hammerhead ribozyme provides crucial constraints for the calculation of three-dimensional models of its self-cleaving conformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chastain, M. & Tinoco, I., Jr., Structural elements in RNA. Prog. Nucleic. Acid Res. molec. Biol. 41, 131–177 1991).

    Article  CAS  Google Scholar 

  2. Holbrook, S.R., Sussman, J.L., Warrant, R.W. & Kim, S.-H. Crystal structure of yeast phenylalanine transfer RNA II. Structural features and functional implications. J. molec. Biol. 123, 631–660 (1978).

    Article  CAS  PubMed  Google Scholar 

  3. Jack, A., Ladner, J.E. & Klug, A. Crystallographic refinement of yeast phenylalanine transfer RNA at 2.5 Å resolution. J. molec. Biol. 108, 619–649 (1976).

    Article  CAS  PubMed  Google Scholar 

  4. Westhof, E., Dumas, P. & Moras, D. Crystallographic refinement of yeast aspartic acid transfer RNA. J. molec. Biol. 184, 119–145 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Biou, V., Yaremchuk, A., Tukalo, M. & Cusack, S. The 2.9 Å crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNASer. Science 263, 1404–1410 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Rould, M.A., Perona, J.J. & Steitz, T.A. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature 352, 213–218 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Cavarelli, J., Rees, B., Ruff, M., Thierry, J.C. & Moras, D. Yeast tRNAAsp recognition by its cognate class II aminoacyl-tRNA synthetase. Nature 362, 181–184 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Basavappa, R. & Sigler, P. B. The 3 Å crystal structure of yeast initiator tRNA: functional implications in initiator/elongator discrimination. EMBO J. 10, 3105–3111 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Varani, G., Cheong, C. & Tinoco, I., Jr. Structure of an unusually stable RNA hairpin. Biochemistry. 30, 3280–3289 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Heus, H. & Pardi, A. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science 253, 191–194 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Wimberly, B., Varani, G. & Tinoco, I. Jr. The conformation of loop E of eukaryotic 5S ribosomal RNA. Biochemistry. 32, 1078–1087 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Szewczak, A.A., Moore, P.B., Chang, Y.L. & Wool, I.G. The conformation of the sarcin/ricin loop from 28S ribosomal RNA. Proc. natn. Acad. Sci. U.S.A. 90, 9581–9585 (1993).

    Article  CAS  Google Scholar 

  13. SantaLucia, J. & Turner, D.H. Structure of (rGGC(GA)GCC)2 in solution from NMR and restrained molecular dynamics. Biochemistry. 32, 12612–12623 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Leclerc, F., Cedergren, R. & Ellington, A.D. A three-dimensional model of the Rev-binding element of HIV-I derived from analyses of aptamers. Nature struct. Biol. 1, 293–300 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Branch, A. D., Benenfeld, B. J. & Robertson, H. D. Ultraviolet light-induced crosslinking reveals a unique region of local tertiary structure in potato spindle tuber viroid and HeLa 5S RNA. Proc. natn. Acad. Sci. U.S.A. 82, 6590–6594 (1985).

    Article  CAS  Google Scholar 

  16. Keese, P. & Symons, R. H. Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proc. natn. Acad. Sci. U.S.A. 82, 4582–4586 (1985).

    Article  CAS  Google Scholar 

  17. Gutell, R. R., Larsen, N. & Woese, C. R. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol. Rev. 58, 10–26 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nierhaus, K. H., Schilling-Bartetzko, S. & Twardowski, T. The two main states of the elongating ribosome and the role of the alpha-sarcin stem-loop structure of 23S RNA. Biochimie 74, 403–410 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Wool, I.G., Gluck, A. & Endo, Y. Ribotoxin recognition of ribosomal RNA and a proposal for the mechanism of translocation. Trends biochem. Sci. 17, 266–269 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Gluck, A., Endo, Y. & Wool, I.G. The ribosomal RNA identity elements for ricin and for alpha-sarcin: mutations in the putative CG pair that closes a GAGA tetraloop. Nucleic Acids Res. 22, 321–324 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Butcher, S.E. & Burke, J.M. A photo-cross-linkable tertiary structure motif found in functionally distinct RNA molecules is essential for catalytic function of the hairpin ribozyme. Biochemistry. 33, 992–999 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Berzal-Herranz, A., Joseph, S., Chowrira, B.M., Butchet, S.E. & Burke, J.M. Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO J. 12, 2567–2573 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aagaard, C. & Douthwaite, S. Requirement for a conserved, tertiary interaction in the core of 23S ribosomal RNA. Proc. natn Acad. Sci. U.S.A. 91, 2989–2993 (1994).

    Article  CAS  Google Scholar 

  24. Wise, J. Guides to the heart of the spliceosome. Science 262, 1978–1979 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Pyle, A.M. Ribozymes: a distinct class of metalloenzymes. Science 261, 709–714 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Bratty, J., Chartrand, P., Ferbeyre, G. & Cedergren, R. The hammerhead RNA domain, a model ribozyme. Biochim. biophys. Acta 1216, 345–359 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Pease, A.C. & Wemmer, D.E. Characterization of the secondary structure and melting of a self-cleaved RNA hammerhead domain by 1H NMR spectroscopy. Biochemistry. 29, 9039–9046 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Heus, H.A. & Pardi, A. Nuclear magnetic resonance studies of the hammerhead ribozyme domain. Secondary structure formation and magnesium ion dependence. J. molec. Biol. 217, 113–124 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Pley, H.W., Lindes, D.S., DeLuca-Flaherty, C. & McKay, D.B. Crystals of a hammerhead ribozyme. J. biol. Chem. 268, 19658–9658 (1993).

    Google Scholar 

  30. Kim, R. et.al. High-resolution crystals and preliminary X-ray diffraction studies of a catalytic RNA. Acta crystallogr. D50, 290–292 (1994).

    CAS  Google Scholar 

  31. Major, F., Turcotte, M., Gautheret, D., Lapalme, G., Fillion, E. & Cedergren, R. The combination of symbolic and numerical computation for three-dimensional modelling of RNA. Science 253, 1255–1260 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Gautheret, D., Major, F. & Cedergren, R. Modelling the three-dimensional structure of RNA using discrete nucleotide conformational sets. J. molec. Biol. 229, 1049–1064 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Brünger, A.T. X-PLOR: a system for crystallography and NMR. (New Haven, Yale University Press;) (1992).

    Google Scholar 

  34. Mei, H.Y., Kaaref, T.W. & Bruice, T.C. A computational approach to the mechanism of self-cleavage of hammerhead RNA. Proc. natn Acad Sci. U.S.A. 86, 9727–9731 (1989).

    Article  CAS  Google Scholar 

  35. Woisard, A., Favre, A., Clivio, P. & Fourrey, J.-L. Hammerhead ribozyme tertiary folding: intrinsic photolabeling studies. J. Am. chem. Soc. 114, 10072–10074 (1992).

    Article  CAS  Google Scholar 

  36. Fu, D.-J., Rajur, S.B. & McLaughlin, L.W. Importance of specific guanosine N7-nitrogens and purine amino groups for efficient cleavage by a hammerhead ribozyme. Biochemistry 32, 10629–10637 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Fu, D.-J. & McLaughlin, L.W. Importance of specific adenosine N7-nitrogens for efficient cleavage by a hammerhead ribozyme. A model for magnesium binding. Biochemistry 31, 10941–10949 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Dahm, S.C., Derrick, W.B. & Uhlenbeck, O.C. Evidence for the role of solvated metal hydroxide in the hammerhead cleavage mechanism. Biochemistry 32, 13040–13045 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Ruffner, D.E. & Uhlenbeck, O.C. Thiophosphate interference experiments locate phosphates important for the hammerhead RNA self-cleavage reaction. Nucleic Acids Res, 18, 6025–6029 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Slim, G. & Gait, M.J. Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozymes. Nucleic. Acids Res. 19, 1183–1188 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dahm, S.C. & Uhlenbeck, O.C. Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry 30, 9464–9469 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Hertel, K.J. et al. Numbering system for the hammerhead. Nucleic Acids Res. 20, 3252 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ruffner, D.E., Stormo, G.D. & Uhlenbeck, O.C. Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry 29, 10695–10702 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wimberly, B. A common RNA loop motif as a docking module and its function in the hammerhead ribozyme. Nat Struct Mol Biol 1, 820–827 (1994). https://doi.org/10.1038/nsb1194-820

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1194-820

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing