Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Studying excited states of proteins by NMR spectroscopy

Abstract

Protein structure is inherently dynamic, with function often predicated on excursions from low to higher energy conformations. For example, X-ray studies of a cavity mutant of T4 lysozyme, L99A, show that the cavity is sterically inaccessible to ligand, yet the protein is able to bind substituted benzenes rapidly. We have used novel relaxation dispersion NMR techniques to kinetically and thermodynamically characterize a transition between a highly populated (97%, 25 °C) ground state conformation and an excited state that is 2.0 kcal mol−1 higher in free energy. A temperature-dependent study of the rates of interconversion between ground and excited states allows the separation of the free energy change into enthalpic (ΔH = 7.1 kcal mol−1) and entropic (TΔS = 5.1 kcal mol−1, 25 °C) components. The residues involved cluster about the cavity, providing evidence that the excited state facilitates ligand entry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dispersion profiles of T4 lysozyme L99A.
Figure 2: Values of the forward (kGE) and backward (kEG) rate constants and the equilibrium constant (KG/E = kEG / kGE) obtained from global fits of kex and pE to 15N (open circle) and 13C (open square) relaxation dispersion measurements for all residues as a function of 1 / T, including best-fit lines (see Methods).
Figure 3: Slow dynamics cluster about the cavity.

Similar content being viewed by others

References

  1. Zhang, X.-J., Wozniak, J.A. & Matthews, B.W. J. Mol. Biol. 250, 527–552 (1995).

    Article  CAS  Google Scholar 

  2. Morton, A. & Matthews, B.W. Biochemistry 34, 8576–8588 (1995).

    Article  CAS  Google Scholar 

  3. Feher, V.A., Baldwin, E.P. & Dahlquist, F.W. Nature Struct. Biol. 3, 516–521 (1996).

    Article  CAS  Google Scholar 

  4. Eriksson, A.E., Baase, W.A., Wozniak, J.A. & Matthews, B.W. Nature 355, 371–373 (1992).

    Article  CAS  Google Scholar 

  5. Mulder, F.A.A., Hon, B., Muhandiram, D.R., Dahlquist, F.W. & Kay, L.E. Biochemistry 39, 12614–12622 (2000).

    Article  CAS  Google Scholar 

  6. Goto, N.K., Skrynnikov, N.R., Dahlquist, F.W. & Kay, L.E. J. Mol. Biol. 308, 745–764 (2001).

    Article  CAS  Google Scholar 

  7. Palmer, A.G., Kroenke, C.D. & Loria, J.P. Methods Enzymol. 339, 204–238 (2001).

    Article  CAS  Google Scholar 

  8. Carver, J.P. & Richards, R.E. J. Magn. Reson. 6, 89–105 (1972).

    CAS  Google Scholar 

  9. Loria, J.P., Rance, M. & Palmer, A.G. J. Am. Chem. Soc. 121, 2331–2332 (1999).

    Article  CAS  Google Scholar 

  10. Skrynnikov, N.R., Mulder, F.A.A., Hon, B., Dahlquist, F.W. & Kay, L.E. J. Am. Chem. Soc. 123, 4556–4566 (2001).

    Article  CAS  Google Scholar 

  11. Rosen, M.K. et al. J. Mol. Biol. 263, 627–636 (1996).

    Article  CAS  Google Scholar 

  12. Lee, A.L., Urbauer, J.L. & Wand, A.J. J. Biomol. NMR 9, 437–440 (1997).

    Article  CAS  Google Scholar 

  13. Allerhand, A. & Thiele, E. J. Chem. Phys. 45, 902–916 (1966).

    Article  CAS  Google Scholar 

  14. Ferry, J.D., Grandine, L.D. & Fitzgerald, E.R. J. Appl. Phys. 24, 911–921 (1953).

    Article  CAS  Google Scholar 

  15. Denisov, V.P., Peters, J., Horlein, H.D. & Halle, B. Nature Struct. Biol. 3, 505–509 (1996).

    Article  CAS  Google Scholar 

  16. Johnson, C.E. & Bovey, F.A. J. Chem. Phys. 29, 1012–1014 (1958).

    Article  CAS  Google Scholar 

  17. Hard, T., Barnes, H.J., Larsson, C., Gustafsson, J.A. & Lund, J. Nature Struct. Biol. 2, 983–989 (1995).

    Article  CAS  Google Scholar 

  18. Ernst, W.A. et al. Immunity 8, 331–340 (1998).

    Article  CAS  Google Scholar 

  19. Cistola, D.P., Kim, K., Rogl, H. & Frieden, C. Biochemistry 35, 7559–7565 (1996).

    Article  CAS  Google Scholar 

  20. Zheleznova, E.E., Markham, P.N., Neyfakh, A.A. & Brennan, R.G. Cell 96, 353–362 (1999).

    Article  CAS  Google Scholar 

  21. Chen, X. et al. J. Mol. Biol. 278, 641–653 (1998).

    Article  CAS  Google Scholar 

  22. Gee, A.C. & Katzenellenbogen, J.A. Mol. Endocr. 15, 421–428 (2001).

    Article  CAS  Google Scholar 

  23. Luz, Z. & Meiboom, S. J. Chem. Phys. 39, 366–370 (1963).

    Article  CAS  Google Scholar 

  24. Millet, O., Loria, J.P., Kroenke, C.D., Pons, M. & Palmer, A.G. J. Am. Chem. Soc. 122, 2867–2877 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was support by grants from the Medical Research Council of Canada (L.E.K.) and the National Institutes of Health (F.W.D.). L.E.K. is a foreign investigator of the Howard Hughes Medical Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis E. Kay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulder, F., Mittermaier, A., Hon, B. et al. Studying excited states of proteins by NMR spectroscopy. Nat Struct Mol Biol 8, 932–935 (2001). https://doi.org/10.1038/nsb1101-932

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1101-932

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing