Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-dimensional structure of human cyclin H, a positive regulator of the CDK-activating kinase

Abstract

Cyclin-dependent kinases (CDKs), which play a key role in cell cycle control, are activated by the CDK activating kinase (CAK), which activates cyclin-bound CDKs by phosphorylation at a specific threonine residue. Vertebrate CAK contains two key components: a kinase subunit with homology to its substrate CDKs and a regulatory subunit with homology to cyclins. We have determined the X-ray crystal structure of the regulatory subunit of CAK, cyclin H, at 2.6 Å resolution. Cyclin H contains two α-helical core domains with a fold similar to that of cyclin A, a regulatory subunit of CAK substrate CDK2, and of TFIIB, a transcription factor. Outside of the core domains, the N- and C-terminal regions of the three structures are completely different. The conformational differences between cyclin H and A structures may reflect functional differences between the two cyclins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Norbury, C. & Nurse, P. Animal cell cycles and their control. Annu. rev. Biochem. 61, 441–470 (1992).

    Article  CAS  Google Scholar 

  2. Nasmyth, K. Control of the yeast cell cycle by the Cdc28 protein kinase. Curr. opin. Cell Biol. 5, 166–179 (1993).

    Article  CAS  Google Scholar 

  3. Morgan, D.O. Principles of CDK regulation. Nature 374, 131–134 (1995).

    Article  CAS  Google Scholar 

  4. Lees, E. Cyclin dependent kinase regulation. Curr. opin. Cell Biol. 7, 773–780 (1995).

    Article  CAS  Google Scholar 

  5. Fesquet, D. et al. The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr 161 and its homologues. EMBO J. 12, 3111–3121 (1993).

    Article  CAS  Google Scholar 

  6. Poon, R.Y.C., Yamashita, K., Adamczewski, J.P., Hunt, T. & Shuttleworth, J. The cdc2-related protein p40M015 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2. EMBO J. 12, 3123–3132 (1993).

    Article  CAS  Google Scholar 

  7. Solomon, M.J., Harper, J.W. & Shuttleworth, J. CAK, the p34 (cdc2) activating kinase, contains a protein identical or closely related to p40 (M015). EMBO J. 12, 3133–3142 (1993).

    Article  CAS  Google Scholar 

  8. Fisher, R.P. & Morgan, D.O. A novel cyclin associates with MO15/CDK7 toformtheCDK-activating kinase. Cell 78, 713–724 (1994).

    Article  CAS  Google Scholar 

  9. Makela, T.P. et al. A cyclin associated with the CDK-activating kinase MO15. Nature 371, 254–257 (1994).

    Article  CAS  Google Scholar 

  10. Fisher, R.P., Jin, P., Chamberlin, H.M. & Morgan, D.O. Alternative mechanisms of CAK assembly require an assembly factor or an activating kinase. Cell 83, 47–57 (1995).

    Article  CAS  Google Scholar 

  11. Devault, A. et al. MAT1 (‘Menage à trios’) a new RING finger protein subunit stabilizing cyclin H-CDK7 complexes in starfish and xenopus CAK. EMBO J. 14, 5027–5036 (1995).

    Article  CAS  Google Scholar 

  12. Tassan, J.P. et al. In vitro assembly of a functional human CDK7-cylin H complex requires MAT1, a novel 36 kDa RING finger protein. EMBO J. 14, 5608–5617 (1995).

    Article  CAS  Google Scholar 

  13. Roy, R. et al. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor Cell 79, 1093–1101 (1994).

    Article  CAS  Google Scholar 

  14. Serizawa, H. et al. Association of Cdk-activating kinase subunits with transcription factor TFIIH. Nature 374, 280–282 (1995).

    Article  CAS  Google Scholar 

  15. Shiekhattar, R. et al. Cdk-activating kinase complex is a component of human transcription factor TFIIH. Nature 374, 283–287 (1995).

    Article  CAS  Google Scholar 

  16. Jeffrey, P.D. et al. Mechanism of CDK activation revealed by the structure of a cyclin A-CDK2 complex. Nature 376, 313–320 (1995).

    Article  CAS  Google Scholar 

  17. Brown, N.R. et al. The crystal structure of cyclin A. Structure 3, 1235–1247 (1995).

    Article  CAS  Google Scholar 

  18. Nikolov, D.B. et al. Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature 377, 119–128 (1995).

    Article  CAS  Google Scholar 

  19. Bagby, S. et al. Solution structure of the C-terminal core domain of human TFIIB: similarity to cyclin A and interaction with TATA-binding protein. Cell 82, 857–867 (1995).

    Article  CAS  Google Scholar 

  20. Nugent, J.H.A., Alfa, C.E., Young, T. & Hyams, J.S. Conserved structural motifs in cyclins identified by sequence analysis. J. cell Sci. 99, 669–674 (1991).

    CAS  PubMed  Google Scholar 

  21. Jancarik, J. & Kim, S.-H. Sparse matrix sampling: a screening method for crystallization of proteins. J. appl. Crystallogr. 24, 409–411 (1991).

    Article  CAS  Google Scholar 

  22. Otwinowski, Z. Oscillation data reduction program, in Data collection and Processing (eds. Sawyer, L, Isaacs, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, England, 1993).

    Google Scholar 

  23. Collaborative computing project No. 4 The CCP4 suite: programs for protein crystallography. Acta crystallogr. D50, 760–763 (1994).

  24. Cowtan, K.D. Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta crystallogr. D49, 148–157 (1993).

    CAS  Google Scholar 

  25. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  26. Brünger, A.T. X-PLOR, version 3.1. a system for X-ray crystallography and NMR (Yale Univ. Press, New Haven, CT, 1993).

    Google Scholar 

  27. Brünger, A.T. The free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  28. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thronton, J.M. PROCHECK - a program to check the stereochemical quality of protein structures. J. appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  29. Kraulis, P.J. MOLSCRIPT - a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Chamberlin, H., Morgan, D. et al. Three-dimensional structure of human cyclin H, a positive regulator of the CDK-activating kinase. Nat Struct Mol Biol 3, 849–855 (1996). https://doi.org/10.1038/nsb1096-849

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1096-849

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing