Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deconstruction of GCN4/GCRE into a monomeric peptide-DNA complex

Abstract

Here we describe a system that enables short peptides to bind DNA sequence-specifically. Linking the peptide covalently to DNA through a disulphide bond eliminates the unfavourable energetic cost of diffusion and thus potentiates the peptide-DNA interaction. By this approach we have deconstructed the GCN4/DNA complex into its elemental DNA recognition units. We find that the GCN4 basic region contacts the two half-sites with very different affinities and propose that this thermodynamic asymmetry plays a role in differential regulation of gene expression. Specific binding of the peptide to DNA stabilizes the disulphide bond toward reduction suggesting a novel approach to the discovery of new DNA-binding specificities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pabo, C.O. & Sauer, R.T. Transcription factors: Structural families and principles of DNA recognition. A. Rev. Biochem. 61, 1053–1095 (1992).

    Article  CAS  Google Scholar 

  2. Harrison, S.C. A structural taxonomy of DNA-binding domains. Nature 353, 715–719 (1991).

    Article  CAS  Google Scholar 

  3. DeGrado, W.F., Wasserman, Z.R. & Lear, J.D. Protein design, a minimalist approach. Science 243, 622–628 (1989).

    Article  CAS  Google Scholar 

  4. Steitz, T.A. Structural studies of protein-nucleic acid interaction: the sources of sequence-specific binding. Q. Rev. Biophys. 23, 205–280 (1990).

    Article  CAS  Google Scholar 

  5. Spolar, R.S. & Record, M.T., Jr Coupling of local folding to site-specific binding of proteins to DNA. Science 263, 777–784 (1994).

    Article  CAS  Google Scholar 

  6. Klemm, J.D., Rould, M.A., Aurora, R., Herr, W. & Pabo, C.O. Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell 77, 21–32 (1994).

    Article  CAS  Google Scholar 

  7. Beamer, L.J. & Pabo, C.O. Refined 1.8 Å crystal structure of the λ repressor-operator complex. J. molec. Biol. 227, 177–196 (1992).

    Article  CAS  Google Scholar 

  8. Wolberger, C., Vershon, A.K., Liu, B., Johnson, A.D. & Pabo, C.O. Crystal structure of a Matα2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. Cell 67, 517–528 (1991).

    Article  CAS  Google Scholar 

  9. Kissinger, C.R., Liu, B., Martin-Bianco, E., Kornberg, T.B. & Pabo, C.O. Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution: A framework for understanding homeodomain-DNA interactions. Cell 63, 579–590 (1990).

    Article  CAS  Google Scholar 

  10. Somers, W.S. & Phillips, S.E.V. Crystal structure of the met repressor-operator complex at 2.8 Å resolution reveals DNA recognition by β-strands. Nature 359, 387–393 (1992).

    Article  CAS  Google Scholar 

  11. Ellenberger, T.E., Brandl, C.J., Struhl, K. & Harrison, S.C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α helices: Crystal structure of the protein-DNA complex. Cell 71, 1223–1237 (1992).

    Article  CAS  Google Scholar 

  12. Struhl, K. Promoters, activator proteins, and the mechanism of transcriptional initiation in yeast. Cell 49, 295–297 (1987).

    Article  CAS  Google Scholar 

  13. Landschulz, W.H., Johnson, P.F. & McKnight, S.L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759–1764 (1988).

    Article  CAS  Google Scholar 

  14. Alber, T. Structure of the leucine zipper. Curr. Opin. Genet. Develop. 2, 205–210 (1992).

    Article  CAS  Google Scholar 

  15. König, P. & Richmond, T.J., X-ray structure of the GCN4-bZIP bound to ATF/CREB site DNA shows the complex depends on DNA flexibility. J. molec. Biol. 233, 139–154 (1993).

    Article  Google Scholar 

  16. Talanian, R.V., McKnight, C.J. & Kim, P.S. Sequence-specific DNA binding by a short peptide dimer. Science 249, 769–778 (1990).

    Article  CAS  Google Scholar 

  17. Talanian, R.V., McKnight, C.J., Rutkowski, R. & Kim, P.S. Minimum length of a sequence-specific DNA binding peptide. Biochemistry 31, 6871–6875 (1992).

    Article  CAS  Google Scholar 

  18. Cuenoud, B. & Schepartz, A. Altered specificity of DNA-binding proteins with transition metal dimerization domains. Science 259, 510–513 (1993).

    Article  CAS  Google Scholar 

  19. Park, C., Campbell, J.L. & Goddard, W.A., III Design superiority of palindromic DNA sites for site-specific recognition of proteins: Tests using protein stitchery. Proc. natn. Acad. Sci. U.S.A. 90, 4892–4895 (1993).

    Article  CAS  Google Scholar 

  20. Suckow, M., Von Wilcken-Bergmann, B. & Müller-Hill, B. The DNA binding specificity of the basic region of the yeast transcriptional activator GCN4 can be changed by substitution of a single amino acid. Nucleic Acids Res. 21, 2081–2086 (1993).

    Article  CAS  Google Scholar 

  21. O'Neil, K.I., Shuman, J.D. & DeGrado, W.F. DNA-induced increase in the α-helical content of C/EBP and GCN4. Biochemistry 30, 774–778 (1991).

    Article  Google Scholar 

  22. Patel, L., Abate, L. & Curran, T. Altered protein conformation on DNA binding by Fos and Jun. Nature 347, 572–575 (1990).

    Article  CAS  Google Scholar 

  23. Weiss, M.A., Ellenberger, I., Wobbe, C.R., Lee, J.P., Harrison, S.C. & Struhl, K. Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA. Nature 347, 575–578 (1990).

    Article  CAS  Google Scholar 

  24. Oliphant, A.R., Brandl, C.J. & Struhl, K. Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: Analysis of yeast GCN4 protein. Molec. cell. Biol. 9, 2944–2949 (1989).

    Article  CAS  Google Scholar 

  25. Sellers, J.W., Vincent, A.C. & Struhl, K. Mutations that define the optimal half-site for binding yeast GCN4 activator protein and identify an ATF/CREB-like repressor that recognizes similar DNA sites. Molec. cell. Biol. 10, 5077–5086 (1990).

    Article  CAS  Google Scholar 

  26. Hill, D.E., Hope, I.A., Macke, J.P. & Struhl, K. Saturation mutagenesis of the yeast his3 regulatory site: Requirements for transcriptional induction and for binding by GCN4 activator protein. Nature 234, 451–457 (1986).

    CAS  Google Scholar 

  27. Ferentz, A.E. & Verdine, G.L. Disulfide cross-linked oligonucleotides. J. Am. chem. Soc. 113, 4000–4002 (1991).

    Article  CAS  Google Scholar 

  28. Ferentz, A.E., Keating, T.A. & Verdine, G.L. Synthesis and characterization of disulfide cross-linked oligonucleotides. J. Am. chem. Soc. 115, 9006–9014 (1993).

    Article  CAS  Google Scholar 

  29. Jeffrey, G.A. & Saenger, W. Hydrogen Bonding in Biological Structures. (Springer-Verlag, Berlin, Heidelberg; 1991).

    Book  Google Scholar 

  30. Jorgensen, W.L. & Pranata, J. Importance of secondary interactions in triply hydrogen bonded complexes: Guanine-Cytosine vs. Uracil-2,6-Diaminopyridine. J. Am. chem. Soc. 112, 2008–2010 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanojevic, D., Verdine, G. Deconstruction of GCN4/GCRE into a monomeric peptide-DNA complex. Nat Struct Mol Biol 2, 450–457 (1995). https://doi.org/10.1038/nsb0695-450

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0695-450

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing