Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The energy landscape of a fast-folding protein mapped by Ala→Gly Substitutions

Abstract

A moderately stable protein with typical folding kinetics unfolds and refolds many times during its cellular lifetime. In monomeric λ, repressor this process is extremely rapid, with an average folded state lifetime of only 30 milliseconds. A thermostable variant of this protein (G46A/G48A) unfolds with the wild-type rate, but it folds in approximately 20 μs making it the fastest-folding protein yet observed. The effects of alanine to glycine substitutions on the folding and unfolding rate constants of the G46A/G48A variant, measured by dynamic NMR spectroscopy, indicate that the transition state is an ensemble comprised of a disperse range of conformations. This structural diversity in the transition state is consistent with the idea that folding chains are directed towards the native state by a smooth funnel-like conformational energy landscape. The kinetic data for the folding of monomeric λ repressor can be understood by merging the new energy landscape view of folding with traditional models. This hybrid model incorporates the conformational diversity of denatured and transition state ensembles, a transition state activation energy, and the importance of intrinsic helical stabilities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dobson, C.M., Evans, P.A. & Radford, S.E. Understanding how proteins fold: the lysozyme story so far. Trends Biochem. Sci. 19, 31–37 (1994).

    Article  CAS  Google Scholar 

  2. Roder, H., Elöve, G.A. & Englander, S.W. Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature 335, 700–704 (1988).

    Article  CAS  Google Scholar 

  3. Udgaonkar, J.B. & Baldwin, R.L. NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature 335, 694–699 (1988).

    Article  CAS  Google Scholar 

  4. Milla, M.E., Brown, B.M., Waldburger, C.D. & Sauer, R.T. P22 Arc represser: transition state properties inferred from mutational effects on the rates of protein unfolding and refolding. Biochemistry 34, 13194–13919 (1995).

    Google Scholar 

  5. Fersht, A.R., Matouschek, A. & Serrano, L. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol. 224, 771–782 (1992).

    Article  CAS  Google Scholar 

  6. Harrison, S.C. & Durbin, R. Is there a single pathway for the folding of a polypeptide chain? Proc. Nat. Acad. Sci. USA 82, 4028–4030 (1985).

    Article  CAS  Google Scholar 

  7. Viguera, A.R., Serrano, L. & Wilmanns, M. Different folding transition states may result in the same native structure. Nature Struct. Biol. 3, 874–880 (1996).

    Article  CAS  Google Scholar 

  8. Wolynes, P.G., Onuchic, J.N. & Thirumalai, D. Navigating the folding routes. Science 267, 1619–1620 (1995).

    Article  CAS  Google Scholar 

  9. Dill, K.A. et al. Principles of protein folding- A perspective from simple exact models. Protein Sci. 4, 561–602 (1995).

    Article  CAS  Google Scholar 

  10. Dill, K.A. & Chan, H.S. From Leventhal to pathways to funnels. Nature Struct. Biol. 4, 10–19 (1997).

    Article  CAS  Google Scholar 

  11. Baldwin, R.L. On-pathway versus off-pathway folding intermediates. Folding and Design 1, R1–R8 (1996).

    Article  CAS  Google Scholar 

  12. Ptitsyn, O.B. Kinetic and equilibrium intermediates in protein folding. Protein Eng. 7, 593–596 (1994).

    Article  CAS  Google Scholar 

  13. Huang, G.S. & Oas, T.G. Sub-millisecond folding of monomeric λ, represser. Proc. Nat. Acad. Sci. USA 92, 6878–6882 (1995).

    Article  CAS  Google Scholar 

  14. Burton, R.E., Huang, G.S., Daugherty, M.A., Fullbright, P.W. & Oas, T.G. Microsecond protein folding through a compact transition state. J. Mol. Biol. 263, 311–322 (1996).

    Article  CAS  Google Scholar 

  15. Huang, G.S. & Oas, T.G. Structure and stability of monomeric λ, repressor: NMR evidence for two-state folding. Biochemistry 34, 3884–3892 (1995).

    Article  CAS  Google Scholar 

  16. Onuchic, J.N., Socci, N.D., Luthey-Schulten, Z. & Wolynes, P.G. Protein folding funnels: the nature of the transition state ensemble. Folding and Design 1, 441–450 (1996).

    Article  CAS  Google Scholar 

  17. Pabo, C.O. & Lewis, M. The operator-binding domain of lambda repressor: structure and DNA recognition. Nature 298, 443–447 (1982).

    Article  CAS  Google Scholar 

  18. D'Aquino, J.A. et al. The magnitude of the backbone conformational entropy change in protein folding. Proteins 25, 143–156 (1996).

    Article  CAS  Google Scholar 

  19. Lee, B. Estimation of the maximum change in stability of globular proteins upon mutation of a hydrophobic residue to another of smaller size. Protein Sci. 2, 733–738 (1993).

    Article  CAS  Google Scholar 

  20. Wang, J. & Purisima, E.O. Analysis of Thermodynamic Determinants in Helix Propensities on Nonpolar Amino Acids through a Novel Free Energy Calculation. J. Am. Chem. Soc. 118, 995–1001 (1996).

    Article  CAS  Google Scholar 

  21. Serrano, L., Sancho, J., Hirshberg, M. & Fersht, A.R. α-helix stablitity in proteins I. emperical correlations concerning substitution of side-chains at the N and C-caps and the replacement of alanine by glycine or serine at solvent-exposed surfaces. J. Mol. Biol. 227, 544–559 (1992).

    Article  CAS  Google Scholar 

  22. Myers, J.K., Pace, C.N. & Scholtz, J.M. Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4, 2138–2148 (1995).

    Article  CAS  Google Scholar 

  23. Chen, B.-L., Baase, W.A., Nicholson, H. & Schellman, J.A. Folding kinetics of T4 lysozyme and nine mutants at 12 °C. Biochemistry 31, 1464–1476 (1992).

    Article  CAS  Google Scholar 

  24. Tanford, C. Protein denaturation. Adav. Protein Chem. 24, 1–95 (1970).

    Article  CAS  Google Scholar 

  25. Matouschek, A., Kellis, J.T., Jr., Serrano, L. & Fersht, A.R. Mapping the transition state and pathway of protein folding by protein engineering. Nature 340, 122–126 (1989).

    Article  CAS  Google Scholar 

  26. Levinthal, C. Are there pathways for protein folding? J. Chem. Phys. 65, 44–45 (1968).

    Google Scholar 

  27. Waldburger, C.D., Jonsson, T. & Sauer, R.T. Barriers to protein folding: formation of buried polar interactions is a slow step in acquisition of structure. Proc. Nat. Acad. Sci. USA 93, 2629–2634 (1996).

    Article  CAS  Google Scholar 

  28. Bryngelson, J.D., Onuchic, J.N., Socci, N.D. & Wolynes, P.G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21, 167–195 (1995).

    Article  CAS  Google Scholar 

  29. Leach, S.J., Nemethy, G. & Scheraga, H.A. Computation of the sterically allowed conformations of peptides. Biopolymers 4, 369–407 (1966).

    Article  CAS  Google Scholar 

  30. Creamer, T.P. & Rose, G.D. & Rose, G.D. α-helix-forming propensities in peptides and proteins. Proteins 19, 85–97 (1994).

    Article  CAS  Google Scholar 

  31. Matouschek, A., Otzen, D.E., Itzhaki, L.S., Jackson, S.E. & Fersht, A.R. Movement of the position of the transition state in protein folding. Biochemistry 34, 13656–13662 (1995).

    Article  CAS  Google Scholar 

  32. Hammes, G.G. & Roberts, P.B. Dynamics of the helix-coil transition in poly-l-ornithine. J. Am. Chem. Soc. 91, 1812–1816 (1969).

    Article  CAS  Google Scholar 

  33. Williams, S. et al. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry 35, 691–697 (1996).

    Article  CAS  Google Scholar 

  34. Wang, Y. & Shortle, D. The equilibrium folding pathway of staphylcoccal nuclease: Identification of the most stable chain-chain interactions by NMR and CD spectroscopy. Biochemistry 34, 15895–15905 (1995).

    Article  CAS  Google Scholar 

  35. Bai, Y.W., Sosnick, T.R., Mayne, L. & Englander, S.W. Protein folding intermediates -native-state hydrogen exchange. Science 269, 192–197 (1995).

    Article  CAS  Google Scholar 

  36. Bai, Y. & Englander, S.W. Future directions in folding: The multi-state nature of protein structure. Proteins 24, 145–151 (1996).

    Article  CAS  Google Scholar 

  37. Viguera, A.R., Villegas, V., Aviles, F.X. & Serrano, L. Favourable native-like helical local interactions can accelerate protein folding. Folding and Design 2, 23–33 (1996).

    Article  Google Scholar 

  38. Karplus, M. & Weaver, D.L. Protein-folding dynamics. Nature 260, 404–406 (1976).

    Article  CAS  Google Scholar 

  39. Karplus, M. & Weaver, D.L. Protein folding dynamics: the diffusion-collision model and experimental data. Protein Sci. 3, 650–668 (1994).

    Article  CAS  Google Scholar 

  40. Kim, P.S. & Baldwin, R.L. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu. Rev. Biochem. 51, 459–89 (1982).

    Article  CAS  Google Scholar 

  41. Kim, P.S. & Baldwin, R.L. Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 59, 631–60 (1990).

    Article  CAS  Google Scholar 

  42. Saven, J.G. & Wolynes, P.G. Local conformational signals and the statistical thermodynamics of collapsed helical proteins. J. Mol. Biol. 257, 199–216 (1996).

    Article  CAS  Google Scholar 

  43. Marqusee, S. & Sauer, R.T. Contribution of hydrogen bond/salt bridge network to the stability of secondary and tertiary structure in λ repressor. Protein Sci. 3, 2217–2225 (1994).

    Article  CAS  Google Scholar 

  44. Pace, C.N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 131, 266–280 (1986).

    Article  CAS  Google Scholar 

  45. Sandstrom, J. Dynamic NMR Spectroscopy (Academic Press, London, 1982).

    Google Scholar 

  46. Kraulis, P.K. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burton, R., Huang, G., Daugherty, M. et al. The energy landscape of a fast-folding protein mapped by Ala→Gly Substitutions. Nat Struct Mol Biol 4, 305–310 (1997). https://doi.org/10.1038/nsb0497-305

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0497-305

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing