Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The repeating segments of the F-actin cross-linking gelation factor (ABP-120) have an immunoglobulin-like fold

Abstract

The 120,000 Mr gelation factor and α-actinin are among the most abundant F-actin cross-linking proteins in Dictyostelium discoideum. Both molecules are rod-shaped homodimers. Each monomer chain is comprised of an actin-binding domain and a rod domain. The rod domain of the gelation factor consists of six 100-residue repetitive segments with high internal homology. We have now determined the three-dimensional structure of segment 4 of the rod domain of the gelation factor from D. discoideum using NMR spectroscopy. The segment consists of seven β-sheets arranged in an immunoglobulin-like (Ig) fold. This is completely different from the α-actinin rod domain which consists of four spectrin-like α-helical segments. The gelation factor is the first example of an Ig-fold found in an actin-binding protein. Two highly homologous actin-binding proteins from human with similar sequences to the gelation factor, filamin and a 280,000 Mr actin-binding protein (ABP-280), share conserved residues that form the core of the gelation factor repetitive segment structure. Thus, the segment 4 structure should be common to this subfamily of the spectrin super-family. The structure of segment 4 together with previously published electron microscopy data, provide an explanation for the dimerization of the whole gelation factor molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eichinger, L. et al. Mechanical perturbation elicits a phenotypic difference between Dictyostelium wild-type cells and cytoskeletal mutants. Biophys. J. 70, 1054–1060 (1996).

    Article  CAS  Google Scholar 

  2. Cunningham, C.C. et al. Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255, 325–327 (1992).

    Article  CAS  Google Scholar 

  3. Noegel, A.A., Rapp, S., Lottspeich, F., Schleicher, M. & Stewart, M. The Dictyostelium gelation factor shares a putative actin binding site with α-actinins and dystrophin and also has a rod repetitive segment containing six 100-residue motifs that appear to have cross-beta conformation. J. Cell Biol. 109, 607–618 (1989).

    Article  CAS  Google Scholar 

  4. Yan, Y. et al. Crystal structure of the repetitive segments of spectrin. Science 262, 2027–2030 (1993).

    Article  CAS  Google Scholar 

  5. Davison, M.D., Baron, M.D., Critchley, D.R. & Wootton, J.C. Structural analysis of homologous repeated repetitive segments in α-actinin and spectrin. Int. J. Biol. Macromol. 11, 81–90 (1989).

    Article  CAS  Google Scholar 

  6. Gorlin, J.B. et al. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): A molecular leaf spring. J. Cell Biol. 111, 1089–1105 (1990).

    Article  CAS  Google Scholar 

  7. Hartwig, J.H. in Protein profile vol. 2, p.739–747, Academic Press, N.Y. (1995)

    Google Scholar 

  8. Stendahl, O.I., Hartwig, J.H., Brotschi, E.A. & Stossel, T.P. Distribution of actin-binding protein and myosin in macrophages during spreading and phagocytosis. J. Cell. Biol. 84, 215–224 (1980).

    Article  CAS  Google Scholar 

  9. Carboni, J.M. & Condeelis, J.S. Ligand-induced changes in the location of actin, myosin, 95 K (α-actinin), and 120 K protein in amoebae of Dictyostelium discoideum. J. Cell Biol. 100, 1884–1893 (1985).

    Article  CAS  Google Scholar 

  10. Condeelis, J. et al. Actin polymerisation and pseudopod extension during amoeboid chemotaxis. Cell Motil. Cytoskel. 10 77–90.

    Article  CAS  Google Scholar 

  11. Condeelis, J., Vahey, M., Carboni, J.M., DeMey, J. & Ogihara, S. Properties of the 120,000- and 95,000-dalton actin-binding proteins from Dictyostelium discoideum and their possible functions in assembling the cytoplasmic matrix. J. Cell Biol. 99, 119s–126s (1984).

    Article  CAS  Google Scholar 

  12. Kay, L.E., Torchia, D.A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: Application to staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989).

    Article  CAS  Google Scholar 

  13. Farrow, N.A. et al. Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2 repetitive segment studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994).

    Article  CAS  Google Scholar 

  14. Clore, G.M., Driscoll, P.C., Wingfield, P.T. & Gronenborn, A.M. Analysis of the backbone dynamics of interleukin 1β using two-dimensional inverse detected he teronuclear 15N-1H NMR spectroscopy. Biochemistry 27, 7387–7401 (1990).

    Article  Google Scholar 

  15. Clubb, R.T. et al. Backbone dynamics of the oligomerization repetitive segment of p53 determind from 15N NMR relaxation measurements. Protein Sci 3, 855–862 (1995).

    Google Scholar 

  16. Zink, T. et al. Structure and dynamics of the human granulocyte colony-stimulating factor determined by NMR spectroscopy. Loop mobility in a four-helix-bundle protein. Biochemistry 33, 8453–8463 (1994).

    Article  CAS  Google Scholar 

  17. Wüthrich, K. NMR of proteins and nucleic acids. New York: Wiley (1986).

    Book  Google Scholar 

  18. Spera, S. & Bax, A. 1991. Empirical correlation between protein backbone conformation and Cα and Cβ 13C nuclear magnetic resonance chemical shifts. J. Am. Chem. Soc. 113, 5490–5492 (1991).

    Article  CAS  Google Scholar 

  19. Wishart, D.S., Sykes, B.D. & Richards, F.M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J. Mol. Biol. 222, 311–333 (1991).

    Article  CAS  Google Scholar 

  20. Holak, T.A., Gondol, D., Otlewski, J. & Wilusz, T. Determination of the complete 3-dimensional structure of the trypsin-inhibitor from squash seeds in aqueous-solution by nuclear magnetic-resonance and a combination of distance geometry and dynamical simulated annealing. J. Mol. Biol. 210, 635–648 (1989).

    Article  CAS  Google Scholar 

  21. Brünger, A.T. & Nilges, M. Computational challenges for macromolecular structure determination by X-ray crystallography and solution nmr spectroscopy. Q. Rev. Biophys. 26, 49–125 (1993).

    Article  Google Scholar 

  22. Harpaz, Y. & Chothia, C. Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J. Mol. Biol. 238, 528–539 (1994).

    Article  CAS  Google Scholar 

  23. Bork, P., Holm, L. & Sander, C. The immunoglobulin fold, structural classi fication, sequence patterns and common core. J. Mol. Biol. 242, 309–320 (1994).

    CAS  Google Scholar 

  24. Tabor, S. Protein expression using the T7 RNA polymerase/promoter system. In Current Protocols in Molecular Biology (Ausubel, F.A. et al. eds.), Greene Publishing and Wiley Interscience, New York, 16.2.1–16.2.11 (1990).

    Google Scholar 

  25. Hoffman, D.W. & Spicer, L.D. Isotopic labeling of specific amino acid types as an aid to NMR spectrum assignment of the methione represser protein. In Techniques in protein chemistry II. Villafranca, J.J., Ed., San Diego: Academic Press. 409–419 (1991).

    Google Scholar 

  26. Muchmore, D.C., Mclntosh, L.P., Russell, C.B., Anderson, D.E. & Dahlquist, T.W. Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Meth. Enzym. 177, 44–73 (1989).

    Article  CAS  Google Scholar 

  27. Clore, G.M. et al. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hart man-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1β. Biochemistry 28, 6150–6156 (1989).

    Article  Google Scholar 

  28. Bax, A. & Davis, D.G. MLEV-17-Based two-dimensional homonuclear magneti zation transfer spectroscopy. J. Magn. Reson. 65, 355–360 (1985).

    CAS  Google Scholar 

  29. Jeener, J., Meier, B.H., Bachman, P. & Ernst, R.R. Investigation of exchange processes by two-dimensional NMR spectroscopy. J. Chem. Phys. 71, 4546–4553 (1979).

    Article  CAS  Google Scholar 

  30. Guèron, M., Plateau, P. & Decorps, M. Solvent signal suppression in NMR. Prog. NMR Spectrosc. 23, 135–209 (1991).

    Article  Google Scholar 

  31. Jahnke, W., Baur, M., Gemmecker, G. & Kessler, H. Improved accuracy of NMR structures by a modified NOESY-HSQC experiment. J. Magn. Reson. B 106, 86–88 (1995).

    Article  Google Scholar 

  32. Muhandiram, D.R., Farrow, N., Xu, G.Y., Smallcombe, S.J. & Kay, L.E. A gradient 13C NOESY-HSQC experiment for recording NOESY spectra of 13C- labeled proteins dissolved in H2O.J. Magn. Reson. B102, 317–321 (1993).

    Article  Google Scholar 

  33. Mori, S., Abeygunawardana, C., Johnson, M.N. & van Zijl, P.C.M. Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J. Magn. Reson. B 108, 94–98 (1995).

    Article  CAS  Google Scholar 

  34. Farrow, N.A. et al. Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994).

    Article  CAS  Google Scholar 

  35. Cieslar, C., Ross, A., Zink, T. & Holak, T.A. Efficiency in multidimensional NMR by optimized recording of time point-phase pairs in evolution periods and their selective linear transformation. J. Magn. Reson. B 101, 97–101 (1993).

    Article  CAS  Google Scholar 

  36. Grzesiek, S. & Bax, A. Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. J. Magn. Reson. 96, 432–440 (1992).

    CAS  Google Scholar 

  37. Sklendr,V., Piotto, M., Leppik, R. & Saudek, V. Gradient-tailored water suppression for 1H-15NHSQC experiments optimized to retain full sensitivity. J. Magn. Reson. A 102, 241–245 (1993).

    Article  Google Scholar 

  38. Grzesiek, S. & Bax, A. Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J. Am. Chem. Soc. 114, 6291–6293.

    Article  CAS  Google Scholar 

  39. Kay, L.E., Xu, G-Y., Singer, A.U., Muhandiram, D.R. & Foreman-Kay, J.D. A gradient-enhanced HCCH-TOCSY experiment for recording side-chain 1H and 13C correlations in H2O samples of proteins. J. Magn. Reson. B 101, 333–337 (1993).

    Article  CAS  Google Scholar 

  40. Hyberts, S.G., Mäki, W. & Wagner, G. Stereospecific assignments of side-chain protons and characterization of torsion angles in Eglin c. Eur. J. Biochem. 164, 625–635 (1987).

    Article  CAS  Google Scholar 

  41. Wagner, G. et al. Protein structures in solution by NMR and distance geometry. The polypeptide fold of the basic trypsin inhibitor determined using two different algorithms, DISGEO and DISMAN. J. Mol. Biol. 196, 611–639 (1988).

    Article  Google Scholar 

  42. Vuister, G.W. & Bax, A. Quantitative J correlation: a new approach for measuring homonuclear three bond J(HN-Hα) coupling constants in 15N-enriched proteins. J. Am. Chem. Soc. 115, 7772–7777 (1993).

    Article  CAS  Google Scholar 

  43. Seip, S., Balbach, J. & Kessler, H. Determination of backbone conformation of isotopically enriched proteins based on coupling constants. J. Magn. Reson. B 104, 172–179 (1994).

    Article  CAS  Google Scholar 

  44. Marion, D. & Wüthrich, K. Application of phase sensitive two dimensional correlated spectroscopy (COSY ) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem. Biophys. Res. Commun. 113, 967–974 (1983).

    Article  CAS  Google Scholar 

  45. Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  46. Insight II, Release 95.0, Biosym/MSI, San Diego (1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fucini, P., Renner, C., Herberhold, C. et al. The repeating segments of the F-actin cross-linking gelation factor (ABP-120) have an immunoglobulin-like fold. Nat Struct Mol Biol 4, 223–230 (1997). https://doi.org/10.1038/nsb0397-223

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0397-223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing