Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The elementome of calcium-based urinary stones and its role in urolithiasis

Key Points

  • The majority of human urinary stones are primarily composed of crystalline calcium salts but many other metals and nonmetals are detectable with concentrations ranging over 10 orders of magnitude

  • The contribution of elements other than calcium to the formation, recurrence or physical properties of human urinary stones is generally poorly defined

  • Over the past 50 years, 20–30 studies of elemental stone content have been published and their findings can be summarized to produce a working elementome of the human calcium-based urinary stone

  • The amount of some elements within human calcium-based urinary stones does not correlate with their normal urinary concentrations, suggesting that accumulation or other processes affect the elemental composition of stones

  • Further refinement of the elementome of calcium-based urinary stones is warranted because it is likely to reveal novel opportunities for monitoring lithogenesis and new targets for therapeutic intervention

Abstract

Urolithiasis affects around 10% of the US population with an increasing rate of prevalence, recurrence and penetrance. The causes for the formation of most urinary calculi remain poorly understood, but obtaining the chemical composition of these stones might help identify key aspects of this process and new targets for treatment. The majority of urinary stones are composed of calcium that is complexed in a crystalline matrix with organic and inorganic components. Surprisingly, mitigation of urolithiasis risk by altering calcium homeostasis has not been very effective. Thus, studies to identify other therapeutic stone-specific targets, using proteomics, metabolomics and microscopy techniques, have been conducted, revealing a high level of complexity. The data suggest that numerous metals other than calcium and many nonmetals are present within calculi at measurable levels and several have distinct distribution patterns. Manipulation of the levels of some of these elemental components of calcium-based stones has resulted in clinically beneficial changes in stone chemistry and rate of stone formation. The elementome—the full spectrum of elemental content—of calcium-based urinary calculi is emerging as a new concept in stone research that continues to provide important insights for improved understanding and prevention of urinary stone disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elemental content of calcium-based urinary stones.
Figure 2: Relationships between the elemental content in calcium-based urinary stones and normal urine.

Similar content being viewed by others

References

  1. Ramello, A., Vitale, C. & Marangella, M. Epidemiology of nephrolithiasis. J. Nephrol. 13 (Suppl. 3), S45–S50 (2000).

    PubMed  Google Scholar 

  2. Pearle, M. S. et al. Medical management of kidney stones: AUA guideline. J. Urol. 192, 316–324 (2014).

    Article  PubMed  Google Scholar 

  3. Romero, V., Akpinar, H. & Assimos, D. G. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev. Urol. 12, e86–e96 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. Pearle, M. S., Calhoun, E. A., Curhan, G. C. & Urologic Diseases of America Project. Urologic Diseases in America Project: urolithiasis. J. Urol. 173, 848–857 (2005).

    Article  PubMed  Google Scholar 

  5. Dwyer, M. E. et al. Temporal trends in incidence of kidney stones among children: a 25-year population based study. J. Urol. 188, 247–252 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Scales, C. D. Jr, Smith, A. C., Hanley, J. M., Saigal, C. S. & Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur. Urol. 62, 160–165 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stamatelou, K. K., Francis, M. E., Jones, C. A., Nyberg, L. M. & Curhan, G. C. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 63, 1817–1823 (2003).

    Article  PubMed  Google Scholar 

  8. West, B. et al. Metabolic syndrome and self-reported history of kidney stones: the National Health and Nutrition Examination Survey (NHANES III) 1988–1994. Am. J. Kidney Dis. 51, 741–747 (2008).

    Article  PubMed  Google Scholar 

  9. Ohta, Y. & Suzuki, K. T. Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium. Toxicol. Appl. Pharmacol. 226, 169–177 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Sutor, D. J. & Scheidt, S. Identification standards for human urinary calculus components, using crystallographic methods. Br. J. Urol. 40, 22–28 (1968).

    Article  CAS  PubMed  Google Scholar 

  11. Lewandowski, S. & Rodgers, A. L. Idiopathic calcium oxalate urolithiasis: risk factors and conservative treatment. Clin. Chim. Acta 345, 17–34 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Evan, A. P., Coe, F. L., Lingeman, J. E. & Worcester, E. Insights on the pathology of kidney stone formation. Urol. Res. 33, 383–389 (2005).

    Article  PubMed  Google Scholar 

  13. Fleisch, H. Inhibitors and promoters of stone formation. Kidney Int. 13, 361–371 (1978).

    Article  CAS  PubMed  Google Scholar 

  14. Khan, S. R. & Kok, D. J. Modulators of urinary stone formation. Front. Biosci. 9, 1450–1482 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Słojewski, M. Major and trace elements in lithogenesis. Cent. European J. Urol. 64, 58–61 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bird, E. D. & Thomas, W. C. Jr. Effect of various metals on mineralization in vitro. Proc. Soc. Exp. Biol. Med. 112, 640–643 (1963).

    Article  CAS  PubMed  Google Scholar 

  17. Caruso, J. A. & Montes-Bayon, M. Elemental speciation studies—new directions for trace metal analysis. Ecotoxicol. Environ. Saf. 56, 148–163 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Meyer, J. L. & Angino, E. E. The role of trace metals in calcium urolithiasis. Invest. Urol. 14, 347–350 (1977).

    CAS  PubMed  Google Scholar 

  19. Muñoz, J. A. & Valiente, M. Effects of trace metals on the inhibition of calcium oxalate crystallization. Urol. Res. 33, 267–272 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. Nagy, Z., Szabo, E. & Kelenhei, M. Spectrum analysis of kidney calculi for metal trace elements [German]. Z. Urol. 56, 186–190 (1963).

    CAS  PubMed  Google Scholar 

  21. Richet, G. Nephrolithiasis at the turn of the 18th to 19th centuries: biochemical disturbances. A genuine cascade giving rise to clinical chemistry. Am. J. Nephrol. 22, 254–259 (2002).

    Article  PubMed  Google Scholar 

  22. Rarback, H. et al. Elemental analysis using differential absorption techniques. Biol. Trace Elem. Res. 13, 103–113 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Morrison, G. H. & Risby, T. H. Elemental trace analysis of biological materials. Crit. Rev. Anal. Chem. 8, 287–320 (1979).

    Article  CAS  Google Scholar 

  24. Parsons, P. J. & Barbosa, F. Jr. Atomic spectrometry and trends in clinical laboratory medicine. Spectrochim. Acta Part B At. Spectros. 62, 992–1003 (2007).

    Article  CAS  Google Scholar 

  25. Thongboonkerd, V. Proteomics and kidney stone disease. Contrib. Nephrol. 160, 142–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Vezzoli, G., Terranegra, A., Arcidiacono, T. & Soldati, L. Genetics and calcium nephrolithiasis. Kidney Int. 80, 587–593 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Gambaro, G. et al. Genetics of hypercalciuria and calcium nephrolithiasis: from the rare monogenic to the common polygenic forms. Am. J. Kidney Dis. 44, 963–986 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Smith, K. S. & Huyck, H. L. An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals in The environmental geochemistry of mineral deposits: Part A, Processes, techniques, and health issues (eds Plumlee, G. S., Logsdon, M. J. & Filipek, L. F.) 6A, 29–70 (Society of Economic Geologists, 1999).

    Google Scholar 

  29. Hamadeh, M. J., Schiffrin, A. & Hoffer, L. J. Sulfate production depicts fed-state adaptation to protein restriction in humans. Am. J. Physiol. Endocrinol. Metab. 281, E341–E348 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Magee, E. A., Curno, R., Edmond, L. M. & Cummings, J. H. Contribution of dietary protein and inorganic sulfur to urinary sulfate: toward a biomarker of inorganic sulfur intake. Am. J. Clin. Nutr. 80, 137–142 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Heilberg, I. P. & Goldfarb, D. S. Optimum nutrition for kidney stone disease. Adv. Chronic Kidney Dis. 20, 165–174 (2013).

    Article  PubMed  Google Scholar 

  32. Reddy, S. T., Wang, C. Y., Sakhaee, K., Brinkley, L. & Pak, C. Y. Effect of low-carbohydrate high-protein diets on acid–base balance, stone-forming propensity, and calcium metabolism. Am. J. Kidney Dis. 40, 265–274 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Tschöpe, W. & Ritz, E. Sulfur-containing amino acids are a major determinant of urinary calcium. Miner. Electrolyte Metab. 11, 137–139 (1985).

    PubMed  Google Scholar 

  34. Rodgers, A. et al. Sulfate but not thiosulfate reduces calculated and measured urinary ionized calcium and supersaturation: implications for the treatment of calcium renal stones. PLoS ONE 9, e103602 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Faragalla, F. F. & Gershoff, S. N. Interelations among magnesium, vitamin B6, sulfur and phosphorus in the formation of kidney stones in the rat. J. Nutr. 81, 60–66 (1963).

    Article  CAS  PubMed  Google Scholar 

  36. White, R. H. Occurrence of S-methyl thioesters in urines of humans after they have eaten asparagus. Science 189, 810–811 (1975).

    Article  CAS  PubMed  Google Scholar 

  37. Borghi, L. et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N. Engl. J. Med. 346, 77–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Romani, A. M. Cellular magnesium homeostasis. Arch. Biochem. Biophys. 512, 1–23 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kohri, K., Garside, J. & Blacklock, N. J. The role of magnesium in calcium oxalate urolithiasis. Br. J. Urol. 61, 107–115 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Oka, T., Yoshioka, T., Koide, T., Takaha, M. & Sonoda, T. Role of magnesium in the growth of calcium oxalate monohydrate and calcium oxalate dihydrate crystals. Urol. Int. 42, 89–93 (1987).

    Article  CAS  PubMed  Google Scholar 

  41. Kato, Y. et al. Changes in urinary parameters after oral administration of potassium-sodium citrate and magnesium oxide to prevent urolithiasis. Urology 63, 7–11; discussion 11–12 (2004).

    Article  PubMed  Google Scholar 

  42. Durak, I. et al. Iron, copper, cadmium, zinc and magnesium contents of urinary tract stones and hair from men with stone disease. Eur. Urol. 17, 243–247 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Kasaoka, S., Kitano, T., Hanai, M., Futatsuka, M. & Esashi, T. Effect of dietary magnesium level on nephrocalcinosis and growth in rats. J. Nutr. Sci. Vitaminol. (Tokyo) 44, 503–514 (1998).

    Article  CAS  Google Scholar 

  44. Schmiedl, A. & Schwille, P. O. Magnesium status in idiopathic calcium urolithiasis—an orientational study in younger males. Eur. J. Clin. Chem. Clin. Biochem. 34, 393–400 (1996).

    PubMed  Google Scholar 

  45. Schwartz, B. F., Bruce, J., Leslie, S. & Stoller, M. L. Rethinking the role of urinary magnesium in calcium urolithiasis. J. Endourol. 15, 233–235 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Atakan, I. H. et al. Serum, urinary and stone zinc, iron, magnesium and copper levels in idiopathic calcium oxalate stone patients. Int. Urol. Nephrol. 39, 351–356 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Oreopoulos, D. G., Soyannwo, M. A. & McGeown, M. G. Magnesium–calcium ratio in urine of patients with renal stones. Lancet 2, 420–422 (1968).

    Article  CAS  PubMed  Google Scholar 

  48. Riley, J. M., Kim, H., Averch, T. D. & Kim, H. J. Effect of magnesium on calcium and oxalate ion binding. J. Endourol. 27, 1487–1492 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Turgut, M. et al. The concentration of Zn, Mg and Mn in calcium oxalate monohydrate stones appears to interfere with their fragility in ESWL therapy. Urol. Res. 36, 31–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Ettinger, B., Citron, J. T., Livermore, B. & Dolman, L. I. Chlorthalidone reduces calcium oxalate calculous recurrence but magnesium hydroxide does not. J. Urol. 139, 679–684 (1988).

    Article  CAS  PubMed  Google Scholar 

  51. Johansson, G. et al. Effects of magnesium hydroxide in renal stone disease. J. Am. Coll. Nutr. 1, 179–185 (1982).

    Article  CAS  PubMed  Google Scholar 

  52. Massey, L. Magnesium therapy for nephrolithiasis. Magnes. Res. 18, 123–126 (2005).

    CAS  PubMed  Google Scholar 

  53. Whelton, P. K. & He, J. Health effects of sodium and potassium in humans. Curr. Opin. Lipidol. 25, 75–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Coe, F. L., Parks, J. H. & Asplin, J. R. The pathogenesis and treatment of kidney stones. N. Engl. J. Med. 327, 1141–1152 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Curhan, G. C., Willett, W. C., Speizer, F. E. & Stampfer, M. J. Twenty-four-hour urine chemistries and the risk of kidney stones among women and men. Kidney Int. 59, 2290–2298 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Curhan, G. C., Willett, W. C., Speizer, F. E., Spiegelman, D. & Stampfer, M. J. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann. Intern. Med. 126, 497–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Meschi, T. et al. Dietary habits in women with recurrent idiopathic calcium nephrolithiasis. J. Transl. Med. 10, 63 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Al Zahrani, H., Norman, R. W., Thompson, C. & Weerasinghe, S. The dietary habits of idiopathic calcium stone-formers and normal control subjects. BJU Int. 85, 616–620 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Massey, L. K. & Whiting, S. J. Dietary salt, urinary calcium, and kidney stone risk. Nutr. Rev. 53, 131–139 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Muldowney, F. P., Freaney, R. & Moloney, M. F. Importance of dietary sodium in the hypercalciuria syndrome. Kidney Int. 22, 292–296 (1982).

    Article  CAS  PubMed  Google Scholar 

  61. Burtis, W. J., Gay, L., Insogna, K. L., Ellison, A. & Broadus, A. E. Dietary hypercalciuria in patients with calcium oxalate kidney stones. Am. J. Clin. Nutr. 60, 424–429 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Silver, J., Rubinger, D., Friedlaender, M. M. & Popovtzer, M. M. Sodium-dependent idiopathic hypercalciuria in renal-stone formers. Lancet 2, 484–486 (1983).

    Article  CAS  PubMed  Google Scholar 

  63. Taylor, E. N., Fung, T. T. & Curhan, G. C. DASH-style diet associates with reduced risk for kidney stones. J. Am. Soc. Nephrol. 20, 2253–2259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nouvenne, A. et al. Effects of a low-salt diet on idiopathic hypercalciuria in calcium-oxalate stone formers: a 3-mo randomized controlled trial. Am. J. Clin. Nutr. 91, 565–570 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Stoller, M. L., Chi, T., Eisner, B. H., Shami, G. & Gentle, D. L. Changes in urinary stone risk factors in hypocitraturic calcium oxalate stone formers treated with dietary sodium supplementation. J. Urol. 181, 1140–1144 (2009).

    Article  PubMed  Google Scholar 

  66. Friedman, P. A. & Gesek, F. A. Calcium transport in renal epithelial cells. Am. J. Physiol. 264, F181–F198 (1993).

    CAS  PubMed  Google Scholar 

  67. Cirillo, M., Laurenzi, M., Panarelli, W. & Stamler, J. Urinary sodium to potassium ratio and urinary stone disease. The Gubbio Population Study Research Group. Kidney Int. 46, 1133–1139 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Curhan, G. C., Willett, W. C., Rimm, E. B. & Stampfer, M. J. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N. Engl. J. Med. 328, 833–838 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Curhan, G. C. Dietary calcium, dietary protein, and kidney stone formation. Miner. Electrolyte Metab. 23, 261–264 (1997).

    CAS  PubMed  Google Scholar 

  70. Hirvonen, T., Pietinen, P., Virtanen, M., Albanes, D. & Virtamo, J. Nutrient intake and use of beverages and the risk of kidney stones among male smokers. Am. J. Epidemiol. 150, 187–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Barcelo, P., Wuhl, O., Servitge, E., Rousaud, A. & Pak, C. Y. Randomized double-blind study of potassium citrate in idiopathic hypocitraturic calcium nephrolithiasis. J. Urol. 150, 1761–1764 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Preminger, G. M., Sakhaee, K., Skurla, C. & Pak, C. Y. Prevention of recurrent calcium stone formation with potassium citrate therapy in patients with distal renal tubular acidosis. J. Urol. 134, 20–23 (1985).

    Article  CAS  PubMed  Google Scholar 

  73. King, J. C. et al. Effect of acute zinc depletion on zinc homeostasis and plasma zinc kinetics in men. Am. J. Clin. Nutr. 74, 116–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Wu, L. N., Genge, B. R. & Wuthier, R. E. Differential effects of zinc and magnesium ions on mineralization activity of phosphatidylserine calcium phosphate complexes. J. Inorg. Biochem. 103, 948–962 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. LeGeros, R. Z., Bleiwas, C. B., Retino, M., Rohanizadeh, R. & LeGeros, J. P. Zinc effect on the in vitro formation of calcium phosphates: relevance to clinical inhibition of calculus formation. Am. J. Dent. 12, 65–71 (1999).

    CAS  PubMed  Google Scholar 

  76. Fujii, E. et al. Selective protein adsorption property and characterization of nano-crystalline zinc-containing hydroxyapatite. Acta Biomater. 2, 69–74 (2006).

    Article  PubMed  Google Scholar 

  77. Ren, F., Xin, R., Ge, X. & Leng, Y. Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater. 5, 3141–3149 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Tang, J., McFann, K. & Chonchol, M. Dietary zinc intake and kidney stone formation: evaluation of NHANES III. Am. J. Nephrol. 36, 549–553 (2012).

    Article  PubMed  CAS  Google Scholar 

  79. Turney, B. W. et al. Diet and risk of kidney stones in the Oxford cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur. J. Epidemiol. 29, 363–369 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Komleh, K., Hada, P., Pendse, A. K. & Singh, P. P. Zinc, copper and manganese in serum, urine and stones. Int. Urol. Nephrol. 22, 113–118 (1990).

    Article  CAS  PubMed  Google Scholar 

  81. Durak, I., Kilic, Z., Sahin, A. & Akpoyraz, M. Analysis of calcium, iron, copper and zinc contents of nucleus and crust parts of urinary calculi. Urol. Res. 20, 23–26 (1992).

    Article  CAS  PubMed  Google Scholar 

  82. Gupta, A., Srivastava, D. K. & Kumar, S. Role of zinc in nephrolithiasis. J. Indian Med. Assoc. 82, 235–237 (1984).

    CAS  PubMed  Google Scholar 

  83. Ozgurtas, T., Yakut, G., Gulec, M., Serdar, M. & Kutluay, T. Role of urinary zinc and copper on calcium oxalate stone formation. Urol. Int. 72, 233–236 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Chou, A. H., LeGeros, R. Z., Chen, Z. & Li, Y. Antibacterial effect of zinc phosphate mineralized guided bone regeneration membranes. Implant. Dent. 16, 89–100 (2007).

    Article  PubMed  Google Scholar 

  85. Winterbourn, C. C., Peskin, A. V. & Parsons-Mair, H. N. Thiol oxidase activity of copper, zinc superoxide dismutase. J. Biol. Chem. 277, 1906–1911 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Storrie, H. & Stupp, S. I. Cellular response to zinc-containing organoapatite: an in vitro study of proliferation, alkaline phosphatase activity and biomineralization. Biomaterials 26, 5492–5499 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Hadley, K. B., Newman, S. M. & Hunt, J. R. Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation, matrix maturation, and mineralization in the long bones of growing rats. J. Nutr. Biochem. 21, 297–303 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Cerovic, A. et al. Effects of zinc on the mineralization of bone nodules from human osteoblast-like cells. Biol. Trace Elem. Res. 116, 61–71 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Yang, Y. J. et al. Dietary zinc intake is inversely related to subclinical atherosclerosis measured by carotid intima-media thickness. Br. J. Nutr. 104, 1202–1211 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Beattie, J. H. & Kwun, I. S. Is zinc deficiency a risk factor for atherosclerosis? Br. J. Nutr. 91, 177–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Ma, X. & Ellis, D. E. Initial stages of hydration and Zn substitution/occupation on hydroxyapatite (0001) surfaces. Biomaterials 29, 257–265 (2008).

    Article  PubMed  CAS  Google Scholar 

  92. Carpentier, X. et al. High Zn content of Randall's plaque: a µ-X-ray fluorescence investigation. J. Trace Elem. Med. Biol. 25, 160–165 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Kalicanin, B. M. & Nikolic´, R. S. Potentiometric stripping analysis of zinc and copper in human teeth and dental materials. J. Trace Elem. Med. Biol. 22, 93–99 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Chi, T. et al. A Drosophila model identifies a critical role for zinc in mineralization for kidney stone disease. PLoS ONE 10, e0124150 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Greger, J. L. & Sutherland, J. E. Aluminum exposure and metabolism. Crit. Rev. Clin. Lab. Sci. 34, 439–474 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Słojewski, M. et al. Microelements in stones, urine, and hair of stone formers: a new key to the puzzle of lithogenesis? Biol. Trace Elem. Res. 137, 301–316 (2010).

    Article  PubMed  CAS  Google Scholar 

  97. Pors Nielsen, S. The biological role of strontium. Bone 35, 583–588 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Li, Z. Y. et al. Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials 28, 1452–1460 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Bazin, D. et al. The status of strontium in biological apatites: an XANES/EXAFS investigation. J. Synchrotron Radiat. 21, 136–142 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Bazin, D. et al. The status of strontium in biological apatites: an XANES investigation. J. Synchrotron Radiat. 18, 912–918 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Blaschko, S. D. et al. Strontium substitution for calcium in lithogenesis. J. Urol. 189, 735–739 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Vezzoli, G. et al. Strontium absorption and excretion in normocalciuric subjects: relation to calcium metabolism. Clin. Chem. 44, 586–590 (1998).

    CAS  PubMed  Google Scholar 

  103. Ammann, P., Badoud, I., Barraud, S., Dayer, R. & Rizzoli, R. Strontium ranelate treatment improves trabecular and cortical intrinsic bone tissue quality, a determinant of bone strength. J. Bone Miner. Res. 22, 1419–1425 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Ciftçioglu, N., Bjorklund, M., Kuorikoski, K., Bergström, K. & Kajander, E. O. Nanobacteria: an infectious cause for kidney stone formation. Kidney Int. 56, 1893–1898 (1999).

    Article  PubMed  Google Scholar 

  105. Wessing, A. & Zierold, K. Metal-salt feeding causes alterations in concretions in Drosophila larval Malpighian tubules as revealed by X-ray microanalysis. J. Insect Physiol. 38, 623–632 (1992).

    Article  CAS  Google Scholar 

  106. Reginster, J. Y. et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J. Clin. Endocrinol. Metab. 90, 2816–2822 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Lieu, P. T., Heiskala, M., Peterson, P. A. & Yang, Y. The roles of iron in health and disease. Mol. Aspects Med. 22, 1–87 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Meyer, J. L. & Thomas, W. C. Jr. Trace metal-citric acid complexes as inhibitors of calcification and crystal growth. II. Effects of Fe(III), Cr(III) and Al(III) complexes on calcium oxalate crystal growth. J. Urol. 128, 1376–1378 (1982).

    Article  CAS  PubMed  Google Scholar 

  109. Meyer, J. L. & Thomas, W. C. Jr. Trace metal-citric acid complexes as inhibitors of calcification and crystal growth. I. Effects of Fe(III), Cr(III) and Al(III) complexes on calcium phosphate crystal growth. J. Urol. 128, 1372–1375 (1982).

    Article  CAS  PubMed  Google Scholar 

  110. Bazin, D., Chevallier, P., Matzen, G., Jungers, P. & Daudon, M. Heavy elements in urinary stones. Urol. Res. 35, 179–184 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Joost, J. & Tessadri, R. Trace element investigations in kidney stone patients. Eur. Urol. 13, 264–270 (1987).

    Article  CAS  PubMed  Google Scholar 

  112. Küpeli, S. et al. Efficiency of extracorporeal shockwave lithotripsy on calcium-oxalate stones: role of copper, iron, magnesium and zinc concentrations on disintegration of the stones. Eur. Urol. 23, 409–412 (1993).

    Article  PubMed  Google Scholar 

  113. Naghii, M. R. & Samman, S. The role of boron in nutrition and metabolism. Prog. Food Nutr. Sci. 17, 331–349 (1993).

    CAS  PubMed  Google Scholar 

  114. Benderdour, M., Bui-Van, T., Dicko, A. & Belleville, F. In vivo and in vitro effects of boron and boronated compounds. J. Trace Elem. Med. Biol. 12, 2–7 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Hunt, C. D. Dietary boron: progress in establishing essential roles in human physiology. J. Trace Elem. Med. Biol. 26, 157–160 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Nielsen, F. H. Update on human health effects of boron. J. Trace Elem. Med. Biol. 28, 383–387 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Hunt, C. D., Herbel, J. L. & Nielsen, F. H. Metabolic responses of postmenopausal women to supplemental dietary boron and aluminum during usual and low magnesium intake: boron, calcium, and magnesium absorption and retention and blood mineral concentrations. Am. J. Clin. Nutr. 65, 803–813 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Naghii, M. R., Einollahi, B. & Rostami, Z. Preliminary evidence hints at a protective role for boron in urolithiasis. J. Altern. Complement. Med. 18, 207–209 (2012).

    Article  PubMed  Google Scholar 

  119. Naghii, M. R. Boron and antioxidants complex: a new concept for the treatment of kidney stones without rigorous pain. Endocr. Regul. 48, 120–125 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Guidotti, T. L. Toxicity and poisoning: the example of lead. Arch. Environ. Occup. Health 69, 64–65 (2014).

    Article  PubMed  Google Scholar 

  121. Sanín, L. H., González-Cossío, T., Romieu, I. & Hernández-Avila, M. Accumulation of lead in bone and its effects on health [Spanish]. Salud Publica Mex. 40, 359–368 (1998).

    Article  PubMed  Google Scholar 

  122. Turnlund, J. R. Human whole-body copper metabolism. Am. J. Clin. Nutr. 67, 960S–964S (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Tawashi, R. & Cousineau, M. Growth retardation of weddellite (calcium oxalate dihydrate) by sodium copper chlorophyllin. Invest. Urol. 18, 86–89 (1980).

    CAS  PubMed  Google Scholar 

  124. Tawashi, R., Cousineau, M. & Denis, G. Crystallisation of calcium oxalate dihydrate in normal urine in presence of sodium copper chlorophyllin. Urol. Res. 10, 173–176 (1982).

    Article  CAS  PubMed  Google Scholar 

  125. Desjardins, A. & Tawashi, R. Growth retardation of calcium oxalate by sodium copper chlorophyllin. Eur. Urol. 4, 294–297 (1978).

    Article  CAS  PubMed  Google Scholar 

  126. Tawashi, R., Cousineau, M. & Sharkawi, M. Effect of sodium copper chlorophyllin on the formation of calcium oxalate crystals in rat kidney. Invest. Urol. 18, 90–92 (1980).

    CAS  PubMed  Google Scholar 

  127. Sarkar, B. Nickel metabolism. IARC Sci. Publ. 53, 367–384 (1984).

    CAS  Google Scholar 

  128. Hofbauer, J. et al. Trace elements and urinary stone formation: new aspects of the pathological mechanism of urinary stone formation. J. Urol. 145, 93–96 (1991).

    Article  CAS  PubMed  Google Scholar 

  129. Nielsen, F. H. Update on the possible nutritional importance of silicon. J. Trace Elem. Med. Biol. 28, 379–382 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Carlisle, E. M. The nutritional essentiality of silicon. Nutr. Rev. 40, 193–198 (1982).

    Article  CAS  PubMed  Google Scholar 

  131. Najda, J., Gmin´ski, J., Drózdz, M. & Danch, A. The action of excessive, inorganic silicon (Si) on the mineral metabolism of calcium (Ca) and magnesium (Mg). Biol. Trace Elem. Res. 37, 107–114 (1993).

    Article  CAS  PubMed  Google Scholar 

  132. Haddad, F. S. & Kouyoumdjian, A. Silica stones in humans. Urol. Int. 41, 70–76 (1986).

    Article  CAS  PubMed  Google Scholar 

  133. May, M. et al. Silica-containing urinary stones—clinical issues to keep in mind [German]. Urologe A 44, 68–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Zhang, X. et al. The role of lithium carbonate and lithium citrate in regulating urinary citrate level and preventing nephrolithiasis. Int. J. Biomed. Sci. 5, 215–222 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Mertz, W. Chromium occurrence and function in biological systems. Physiol. Rev. 49, 163–239 (1969).

    Article  CAS  PubMed  Google Scholar 

  136. Anderson, R. A. et al. Effects of chromium supplementation on urinary Cr excretion of human subjects and correlation of Cr excretion with selected clinical parameters. J. Nutr. 113, 276–281 (1983).

    Article  CAS  PubMed  Google Scholar 

  137. Lim, T. H., Sargent, T. 3rd & Kusubov, N. Kinetics of trace element chromium(III) in the human body. Am. J. Physiol. 244, R445–R454 (1983).

    CAS  PubMed  Google Scholar 

  138. Spinedi, A., Pacini, L., Luly, P., Lombardi, U. & Nisticò, G. Rubidium shows effects different from lithium on phosphatidylinositol metabolism in a cell line of human neuroblastoma. Funct. Neurol. 7, 305–308 (1992).

    CAS  PubMed  Google Scholar 

  139. Aschner, J. L. & Aschner, M. Nutritional aspects of manganese homeostasis. Mol. Aspects Med. 26, 353–362 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Leach, R. M. Jr & Gay, C. V. Role of epiphyseal cartilage in endochondral bone formation. J. Nutr. 117, 784–790 (1987).

    Article  PubMed  Google Scholar 

  141. Ponnapakkam, T., Iszard, M. & Henry-Sam, G. Effects of oral administration of manganese on the kidneys and urinary bladder of Sprague-Dawley rats. Int. J. Toxicol. 22, 227–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Trinchieri, A., Mandressi, A., Luongo, P., Longo, G. & Pisani, E. The influence of diet on urinary risk factors for stones in healthy subjects and idiopathic renal calcium stone formers. Br. J. Urol. 67, 230–236 (1991).

    Article  CAS  PubMed  Google Scholar 

  143. French, R. J. & Jones, P. J. Role of vanadium in nutrition: metabolism, essentiality and dietary considerations. Life Sci. 52, 339–346 (1993).

    Article  CAS  PubMed  Google Scholar 

  144. Heinrich, H. C. & Gabbe, E. E. Metabolic behavior of inorganic cobalt and of vitamin B-12 as well as vitamin B-12 coenzyme structure of organically bound cobalt in mammals [German]. Z. Naturforsch. B 19, 1032–1042 (1964).

    Article  CAS  PubMed  Google Scholar 

  145. Sakly, R., Chaouch, A., el Hani, A. & Najjar, M. F. Effects of intraperitoneally administered vitamin E and selenium on calcium oxalate renal stone formation: experimental study in rat. Ann. Urol. (Paris) 37, 47–50 (2003).

    Article  CAS  Google Scholar 

  146. Santhosh Kumar, M. & Selvam, R. Supplementation of vitamin E and selenium prevents hyperoxaluria in experimental urolithic rats. J. Nutr. Biochem. 14, 306–313 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Lahme, S., Feil, G., Strohmaier, W. L., Bichler, K. H. & Stenzl, A. Renal tubular alteration by crystalluria in stone disease—an experimental study by means of MDCK cells. Urol. Int. 72, 244–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Mendel, R. R. Metabolism of molybdenum. Met. Ions Life Sci. 12, 503–528 (2013).

    Article  PubMed  Google Scholar 

  149. Karring, M., Pohjanvirta, R., Rahko, T. & Korpela, H. The influence of dietary molybdenum and copper supplementation on the contents of serum uric acid and some trace elements in cocks. Acta Vet. Scand. 22, 289–295 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Deosthale, Y. G. & Gopalan, C. The effect of molybdenum levels in sorghum (Sorghum vulgare Pers.) on uric acid and copper excretion in man. Br. J. Nutr. 31, 351–355 (1974).

    Article  CAS  PubMed  Google Scholar 

  151. Shen, S., Li, X. F., Cullen, W. R., Weinfeld, M. & Le, X. C. Arsenic binding to proteins. Chem. Rev. 113, 7769–7792 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Uthus, E. O. Arsenic essentiality: a role affecting methionine metabolism. J. Trace Elem. Exper. Med. 16, 345–355 (2003).

    Article  CAS  Google Scholar 

  153. Nawrot, T. S. et al. Cadmium exposure in the population: from health risks to strategies of prevention. Biometals 23, 769–782 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Järup, L. Cadmium overload and toxicity. Nephrol. Dial. Transplant. 17 (Suppl. 2), 35–39 (2002).

    Article  PubMed  Google Scholar 

  155. Friberg, L. Health hazards in the manufacture of alkaline accumulators with special reference to chronic cadmium poisoning; a clinical and experimental study. Acta Med. Scand. Suppl. 240, 1–124 (1950).

    CAS  PubMed  Google Scholar 

  156. Elinder, C. G., Edling, C., Lindberg, E., Kågedal, B. & Vesterberg, O. Assessment of renal function in workers previously exposed to cadmium. Br. J. Ind. Med. 42, 754–760 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Scott, R., Paterson, P. J., Burns, R., Fell, G. S. & Ottoway, J. M. The effects of treatment on the hypercalciuria of chronic cadmium poisoning. Urol. Res. 7, 285–289 (1979).

    Article  CAS  PubMed  Google Scholar 

  158. Ferraro, P. M. et al. Cadmium exposure and kidney stone formation in the general population—an analysis of the National Health and Nutrition Examination Survey III data. J. Endourol. 25, 875–880 (2011).

    Article  PubMed  Google Scholar 

  159. Swaddiwudhipong, W. et al. Progress in cadmium-related health effects in persons with high environmental exposure in northwestern Thailand: a five-year follow-up. Environ. Res. 112, 194–198 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Kaewnate, Y. et al. Association of elevated urinary cadmium with urinary stone, hypercalciuria and renal tubular dysfunction in the population of cadmium-contaminated area. Bull. Environ. Contam. Toxicol. 89, 1120–1124 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Thomas, L. D., Elinder, C. G., Tiselius, H. G., Wolk, A. & Akesson, A. Dietary cadmium exposure and kidney stone incidence: a population-based prospective cohort study of men & women. Environ. Int. 59, 148–151 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Chen, X. et al. Effects of lead and cadmium co-exposure on bone mineral density in a Chinese population. Bone 63, 76–80 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Bhattacharyya, M. H. Cadmium osteotoxicity in experimental animals: mechanisms and relationship to human exposures. Toxicol. Appl. Pharmacol. 238, 258–265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Perk, H., Serel, T. A., Kos˛ar, A., Deniz, N. & Sayin, A. Analysis of the trace element contents of inner nucleus and outer crust parts of urinary calculi. Urol. Int. 68, 286–290 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Kappas, A. & Maines, M. D. Tin: a potent inducer of heme oxygenase in kidney. Science 192, 60–62 (1976).

    Article  CAS  PubMed  Google Scholar 

  166. Esposito, M. et al. Plasma and tissue levels of some lanthanide elements in malignant and non-malignant human tissues. Sci. Total Environ. 50, 55–63 (1986).

    Article  CAS  PubMed  Google Scholar 

  167. Sojka, B. et al. Hydrophobic sodium fluoride-based nanocrystals doped with lanthanide ions: assessment of in vitro toxicity to human blood lymphocytes and phagocytes. J. Appl. Toxicol. 34, 1220–1225 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. de Freitas, D., Donne, R. L. & Hutchison, A. J. Lanthanum carbonate--a first line phosphate binder? Semin. Dial. 20, 325–328 (2007).

    Article  PubMed  Google Scholar 

  169. Barton Pai, A., Conner, T. A. & McQuade, C. R. Therapeutic use of the phosphate binder lanthanum carbonate. Expert Opin. Drug Metab. Toxicol. 5, 71–81 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Guo, H., Zhang, X., Tang, S. & Zhang, S. Effects and safety of lanthanum carbonate in end stage renal disease patients with hyperphosphatemia: a meta-analysis—system review of lanthanum carbonate. Ren. Fail. 35, 1455–1464 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Cameron, M. A., Sakhaee, K. & Moe, O. W. Nephrolithiasis in children. Pediatr. Nephrol. 20, 1587–1592 (2005).

    Article  PubMed  Google Scholar 

  172. Tandon, L., Iyengar, G. V. & Parr, R. M. A review of radiologically important trace elements in human bones. Appl. Radiat. Isot. 49, 903–910 (1998).

    Article  CAS  PubMed  Google Scholar 

  173. Tietz, N. W. Clinical guide to laboratory tests (Saunders, 1995).

    Google Scholar 

  174. Moshfegh, A., Goldman, J. & Cleveland, L. What we eat in America, NHANES 2001–2002: usual nutrient intakes from food compared to dietary reference intakes. US Department of Agriculture, Agriculture Research Service [online], (2005).

    Google Scholar 

  175. Briefel, R. R. et al. Zinc intake of the U.S. population: findings from the third National Health and Nutrition Examination Survey, 1988–1994. J. Nutr. 130, 1367S–1373S (2000).

    Article  CAS  PubMed  Google Scholar 

  176. Abdel-Gawad, M., Ali-El-Dein, B., Mehta, S., Al-Kohlany, K. M. & Elsobky, E. A correlation study between macro- and micro-analysis of pediatric urinary calculi. J. Pediatr. Urol. 10, 1267–1272 (2014).

    Article  PubMed  Google Scholar 

  177. Ohta, N. Studies on inorganic constituents in biological materials.—On the inorganic constituents in human stones. Bull. Chem. Soc. Jpn 30, 833–841 (1957).

    Article  CAS  Google Scholar 

  178. Levinson, A. A. et al. Trace elements in kidney stones from three areas in the United States. Invest. Urol. 15, 270–274 (1978).

    CAS  PubMed  Google Scholar 

  179. Wandt, M. A., Pougnet, M. A. & Rodgers, A. L. Determination of calcium, magnesium and phosphorus in human stones by inductively coupled plasma atomic-emission spectroscopy. Analyst 109, 1071–1074 (1984).

    Article  CAS  PubMed  Google Scholar 

  180. Durak, I., Yasar, A., Yurtarslani, Z., Akpoyraz, M. & Tasman, S. Analysis of magnesium and trace elements in urinary calculi by atomic absorption spectrophotometry. Br. J. Urol. 62, 203–205 (1988).

    Article  CAS  PubMed  Google Scholar 

  181. Wandt, M. A. & Underhill, L. G. Covariance biplot analysis of trace element concentrations in urinary stones. Br. J. Urol. 61, 474–481 (1988).

    Article  CAS  PubMed  Google Scholar 

  182. Durak, I., Akpoyraz, M. & Sahin, A. Sodium, potassium and chloride concentrations in the inner nucleus and outer crust parts of urinary tract calculi. Int. Urol. Nephrol. 23, 221–226 (1991).

    Article  CAS  PubMed  Google Scholar 

  183. Höbarth, K., Koeberl, C. & Hofbauer, J. Rare-earth elements in urinary calculi. Urol. Res. 21, 261–264 (1993).

    Article  PubMed  Google Scholar 

  184. Fang, X., Ahmad, S. R., Mayo, M. & Iqbal, S. Elemental analysis of urinary calculi by laser induced plasma spectroscopy. Lasers Med. Sci. 20, 132–137 (2005).

    Article  PubMed  Google Scholar 

  185. Abboud, I. A. Concentration effect of trace metals in Jordanian patients of urinary calculi. Environ. Geochem. Health 30, 11–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Giannossi, M. L., Summa, V. & Mongelli, G. Trace element investigations in urinary stones: a preliminary pilot case in Basilicata (Southern Italy). J. Trace Elem. Med. Biol. 27, 91–97 (2013).

    Article  CAS  PubMed  Google Scholar 

  187. Keshavarzi, B. et al. Trace elements in urinary stones: a preliminary investigation in Fars province, Iran. Environ. Geochem. Health 37, 377–389 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.R. and D.W.K. contributed equally to this manuscript. The authors' research is supported by the NIH NIDDK RFA-DK-12-003: Planning Centers for Interdisciplinary Research in Benign Urology (IR-BU)(P20).

Author information

Authors and Affiliations

Authors

Contributions

K.R. and D.W.K. researched data for the article. K.R., D.W.K. and M.L.S. wrote the article. All authors contributed to discussion of the content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Marshall L. Stoller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramaswamy, K., Killilea, D., Kapahi, P. et al. The elementome of calcium-based urinary stones and its role in urolithiasis. Nat Rev Urol 12, 543–557 (2015). https://doi.org/10.1038/nrurol.2015.208

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing