Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging threat of multidrug-resistant Gram-negative bacteria in urology

Key Points

  • Multidrug-resistant Gram-negative pathogens are rapidly emerging and spreading globally

  • These multidrug-resistant pathogens are frequently associated with major pathologies, including urinary tract infections

  • Routine urological practices are affected by multidrug-resistant pathogens

  • Knowledge of the local epidemiology of multidrug-resistant Gram-negative bacteria is essential for determining empirical antimicrobial therapy

Abstract

Antibiotic resistance in Gram-negative uropathogens is a major global concern. Worldwide, the prevalence of Enterobacteriaceae that produce extended-spectrum β-lactamase or carbapenemase enzymes continues to increase at alarming rates. Likewise, resistance to other antimicrobial agents including aminoglycosides, sulphonamides and fluoroquinolones is also escalating rapidly. Bacterial resistance has major implications for urological practice, particularly in relation to catheter-associated urinary tract infections (UTIs) and infectious complications following transrectal-ultrasonography-guided biopsy of the prostate or urological surgery. Although some new drugs with activity against Gram-negative bacteria with highly resistant phenotypes will become available in the near future, the existence of a single agent with activity against the great diversity of resistance is unlikely. Responding to the challenges of Gram-negative resistance will require a multifaceted approach including considered use of current antimicrobial agents, improved diagnostics (including the rapid detection of resistance) and surveillance, better adherence to basic measures of infection prevention, development of new antibiotics and research into non-antibiotic treatment and preventive strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Infection and resistance in urological practice.
Figure 2: Global epidemiology of resistance in Gram-negative uropathogens—fluoroquinolones.
Figure 3: Global epidemiology of resistance in Gram-negative uropathogens—third-generation cephalosporins.
Figure 4: Global epidemiology of resistance in Gram-negative uropathogens—carbapenems.

Similar content being viewed by others

References

  1. Lloyd, W. F. Two lectures on the checks to population (Oxford University Press, 1833).

  2. Hardin, G. The tragedy of the commons. The population problem has no technical solution; it requires a fundamental extension in morality. Science 162, 1243–1248 (1968).

    Article  CAS  PubMed  Google Scholar 

  3. Bhullar, K. et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE 7, e34953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ronald, A. R. et al. Urinary tract infection in adults: research priorities and strategies. Int. J. Antimicrob. Agents 17, 343–348 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Totsika, M. et al. Uropathogenic Escherichia coli mediated urinary tract infection. Curr. Drug Targets 13, 1386–1399 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Stamm, W. E. & Norrby, S. R. Urinary tract infections: disease panorama and challenges. J. Infect. Dis. 183 (Suppl. 1), S1–S4 (2001).

    Article  PubMed  Google Scholar 

  7. Barber, A. E., Norton, J. P., Spivak, A. M. & Mulvey, M. A. Urinary tract infections: current and emerging management strategies. Clin. Infect. Dis. 57, 719–724 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 7, 653–660 (2010).

    Article  PubMed  Google Scholar 

  9. Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269–284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Foxman, B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am. J. Med. 113 (Suppl. 1A), 5s–13s (2002).

    Article  PubMed  Google Scholar 

  11. Zalmanovici Trestioreanu, A., Green, H., Paul, M., Yaphe, J. & Leibovici, L. Antimicrobial agents for treating uncomplicated urinary tract infection in women. Cochrane Database of Systemetic Reviews, Issue 10. Art. No.: CD007182. http://dx.doi.org/10.1002/14651858.CD007182.pub2.

  12. Costelloe, C., Metcalfe, C., Lovering, A., Mant, D. & Hay, A. D. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ 340, c2096 (2010).

    Article  PubMed  Google Scholar 

  13. Paterson, D. L. & Bonomo, R. A. Extended-spectrum beta-lactamases: a clinical update. Clin. Microbiol. Rev. 18, 657–686 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Doi, Y. et al. Community-associated extended-spectrum beta-lactamase-producing Escherichia coli infection in the United States. Clin. Infect. Dis. 56, 641–648 (2013).

    Article  PubMed  Google Scholar 

  15. Van Boeckel, T. P. et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect. Dis. 14, 742–750 (2014).

    Article  PubMed  Google Scholar 

  16. World Health Organization. Antimicrobial resistance global report on surveillance 2014. World Health Organization [online], (2014).

  17. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. Centers for Disease Control and Prevention [online], (2013).

  18. Rogers, B. A. et al. Community-onset Escherichia coli infection resistant to expanded-spectrum cephalosporins in low-prevalence countries. Antimicrob. Agents Chemother. 58, 2126–2134 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Munoz-Price, L. S. et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis. 13, 785–796 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wailan, A. M. & Paterson, D. L. The spread and acquisition of NDM-1: a multifactorial problem. Expert Rev. Anti. Infect. Ther. 12, 91–115 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Poirel, L., Potron, A. & Nordmann, P. OXA-48-like carbapenemases: the phantom menace. J. Antimicrob. Chemother. 67, 1597–1606 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Peleg, A. Y. & Hooper, D. C. Hospital-acquired infections due to gram-negative bacteria. N. Engl. J. Med. 362, 1804–1813 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Magiorakos, A. P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268–281 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Ramirez, M. S. & Tolmasky, M. E. Aminoglycoside modifying enzymes. Drug Resist. Updat. 13, 151–171 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aldred, K. J., Kerns, R. J. & Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry 53, 1565–1574 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Huovinen, P. Resistance to trimethoprim-sulfamethoxazole. Clin. Infect. Dis. 32, 1608–1614 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Li, X. Z., Plesiat, P. & Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 28, 337–418 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fernandez, L. & Hancock, R. E. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 25, 661–681 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hackel, M., Badal, R., Lob, D. & Hoban, D. J. Susceptibility and Multidrug Resistance among E. coli from Urinary Tract Infections in Asia/Pacific—SMART 2012–2013 Abstract from the 15th Asia-Pacific Congress for Clinical Microbiology and Infection (APCCMI), Kuala Lumpur, 28th November 2014.

  31. Turnidge, J. D. et al. Community-onset Gram-negative Surveillance Program annual report, 2012. Commun. Dis. Intell. Q. Rep. 38, E54–E58 (2014).

    PubMed  Google Scholar 

  32. European Centre for Disease Prevention and Control. Antimicrobial resistance interactive database (EARS-Net). European Centre for Disease Prevention and Control [online], (2013).

  33. Hoban, D. J. et al. Antimicrobial susceptibility of Enterobacteriaceae, including molecular characterization of extended-spectrum beta-lactamase-producing species, in urinary tract isolates from hospitalized patients in North America and Europe: results from the SMART study 2009–2010. Diagn. Microbiol. Infect. Dis. 74, 62–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Petty, N. K. et al. Global dissemination of a multidrug resistant Escherichia coli clone. Proc. Natl Acad. Sci. USA 111, 5694–5699 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nordmann, P., Naas, T. & Poirel, L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 17, 1791–1798 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsutsui, A. et al. Genotypes and infection sites in an outbreak of multidrug-resistant Pseudomonas aeruginosa. J. Hosp. Infect. 78, 317–322 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Zowawi, H. M., Balkhy, H. H., Walsh, T. R. & Paterson, D. L. beta-Lactamase production in key gram-negative pathogen isolates from the Arabian Peninsula. Clin. Microbiol. Rev. 26, 361–380 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dortet, L., Poirel, L. & Nordmann, P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed. Res. Int. 2014, 249856 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Evans, B. A. & Amyes, S. G. OXA beta-lactamases. Clin. Microbiol. Rev. 27, 241–263 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hannan, T. J. et al. Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol. Rev. 36, 616–648 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Nielubowicz, G. R. & Mobley, H. L. Host–pathogen interactions in urinary tract infection. Nat. Rev. Urol. 7, 430–441 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Waksman, G. & Hultgren, S. J. Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat. Rev. Microbiol. 7, 765–774 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wright, K. J. & Hultgren, S. J. Sticky fibers and uropathogenesis: bacterial adhesins in the urinary tract. Future Microbiol. 1, 75–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Wurpel, D. J., Beatson, S. A., Totsika, M., Petty, N. K. & Schembri, M. A. Chaperone-usher fimbriae of Escherichia coli. PLoS ONE 8, e52835 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Connell, I. et al. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc. Natl Acad. Sci. USA 93, 9827–9832 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mulvey, M. A. et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282, 1494–1497 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Armbruster, C. E. & Mobley, H. L. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat. Rev. Microbiol. 10, 743–754 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Anderson, G. G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105–107 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. World Health Organization. Prevention of hospital-acquired infections: a practical guide. 2nd edition. World Health Organization [online], (2002).

  50. Klevens, R. M. et al. Estimating health care-associated infections and deaths in U. S. hospitals, 2002. Public Health Rep. 122, 160–166 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Smith, P. W. et al. SHEA/APIC guideline: infection prevention and control in the long-term care facility, July 2008. Infect. Control Hosp. Epidemiol. 29, 785–814 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tambyah, P. A., Knasinski, V. & Maki, D. G. The direct costs of nosocomial catheter-associated urinary tract infection in the era of managed care. Infect. Control Hosp. Epidemiol. 23, 27–31 (2002).

    Article  PubMed  Google Scholar 

  53. Kunin, C. M., Chin, Q. F. & Chambers, S. Morbidity and mortality associated with indwelling urinary catheters in elderly patients in a nursing home—confounding due to the presence of associated diseases. J. Am. Geriatr. Soc. 35, 1001–1006 (1987).

    Article  CAS  PubMed  Google Scholar 

  54. Rodriguez-Bano, J. et al. Community infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. Arch. Intern. Med. 168, 1897–1902 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Ho, P. L., Chan, W. M., Tsang, K. W., Wong, S. S. & Young, K. Bacteremia caused by Escherichia coli producing extended-spectrum beta-lactamase: a case-control study of risk factors and outcomes. Scand. J. Infect. Dis. 34, 567–573 (2002).

    Article  PubMed  Google Scholar 

  56. Shilo, S. et al. Risk factors for bacteriuria with carbapenem-resistant Klebsiella pneumoniae and its impact on mortality: a case-control study. Infection 41, 503–509 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Wagenlehner, F. M., Niemetz, A., Dalhoff, A. & Naber, K. G. Spectrum and antibiotic resistance of uropathogens from hospitalized patients with urinary tract infections: 1994–2000. Int. J. Antimicrob. Agents 19, 557–564 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Maki, D. G. & Tambyah, P. A. Engineering out the risk for infection with urinary catheters. Emerg. Infect. Dis. 7, 342–347 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kass, E. H. & Schneiderman, L. J. Entry of bacteria into the urinary tracts of patients with inlying catheters. N. Engl. J. Med. 256, 556–557 (1957).

    Article  CAS  PubMed  Google Scholar 

  60. Platt, R., Polk, B. F., Murdock, B. & Rosner, B. Reduction of mortality associated with nosocomial urinary tract infection. Lancet 1, 893–897 (1983).

    Article  CAS  PubMed  Google Scholar 

  61. Tambyah, P. A., Halvorson, K. T. & Maki, D. G. A prospective study of pathogenesis of catheter-associated urinary tract infections. Mayo Clin. Proc. 74, 131–136 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Djeribi, R., Bouchloukh, W., Jouenne, T. & Menaa, B. Characterization of bacterial biofilms formed on urinary catheters. Am. J. Infect. Control 40, 854–859 (2012).

    Article  PubMed  Google Scholar 

  63. Chartier-Kastler, E. & Denys, P. Intermittent catheterization with hydrophilic catheters as a treatment of chronic neurogenic urinary retention. Neurourol. Urodyn. 30, 21–31 (2011).

    Article  PubMed  Google Scholar 

  64. Beattie, M. & Taylor, J. Silver alloy vs. uncoated urinary catheters: a systematic review of the literature. J. Clin. Nurs. 20, 2098–2108 (2011).

    Article  PubMed  Google Scholar 

  65. Desai, D. G., Liao, K. S., Cevallos, M. E. & Trautner, B. W. Silver or nitrofurazone impregnation of urinary catheters has a minimal effect on uropathogen adherence. J. Urol. 184, 2565–2571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pickard, R. et al. Antimicrobial catheters for reduction of symptomatic urinary tract infection in adults requiring short-term catheterisation in hospital: a multicentre randomised controlled trial. Lancet 380, 1927–1935 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Lo, E. et al. Strategies to prevent catheter-associated urinary tract infections in acute care hospitals: 2014 update. Infect. Control Hosp. Epidemiol. 35, 464–479 (2014).

    Article  PubMed  Google Scholar 

  68. Tenke, P. et al. European and Asian guidelines on management and prevention of catheter-associated urinary tract infections. Int. J. Antimicrob. Agents 31 (Suppl. 1), S68–S78 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Gould, C. V., Umscheid, C. A., Agarwal, R. K., Kuntz, G. & Pegues, D. A. Guideline for prevention of catheter-associated urinary tract infections 2009. Infect. Control Hosp. Epidemiol. 31, 319–326 (2010).

    Article  PubMed  Google Scholar 

  70. Morton, S. C. et al. Antimicrobial prophylaxis for urinary tract infection in persons with spinal cord dysfunction. Arch. Phys. Med. Rehabil. 83, 129–138 (2002).

    Article  PubMed  Google Scholar 

  71. Apisarnthanarak, A. et al. Effectiveness of multifaceted hospitalwide quality improvement programs featuring an intervention to remove unnecessary urinary catheters at a tertiary care center in Thailand. Infect. Control Hosp. Epidemiol. 28, 791–798 (2007).

    Article  PubMed  Google Scholar 

  72. Fakih, M. G. et al. Effect of nurse-led multidisciplinary rounds on reducing the unnecessary use of urinary catheterization in hospitalized patients. Infect. Control Hosp. Epidemiol. 29, 815–819 (2008).

    Article  PubMed  Google Scholar 

  73. Williamson, D. A. et al. Infectious complications following transrectal ultrasound-guided prostate biopsy: new challenges in the era of multidrug-resistant Escherichia coli. Clin. Infect. Dis. 57, 267–274 (2013).

    Article  PubMed  Google Scholar 

  74. Loeb, S. et al. Systematic review of complications of prostate biopsy. Eur. Urol. 64, 876–892 (2013).

    Article  PubMed  Google Scholar 

  75. Grabe, M. et al. Guidelines on urological infections. European Association of Urology [online], (2015).

    Google Scholar 

  76. Roberts, M. J. et al. Multifocal abscesses due to multiresistant Escherichia coli after transrectal ultrasound-guided prostate biopsy. Med. J. Aust. 198, 282–284 (2013).

    Article  PubMed  Google Scholar 

  77. Wagenlehner, F. M., Pilatz, A., Waliszewski, P., Weidner, W. & Johansen, T. E. Reducing infection rates after prostate biopsy. Nat. Rev. Urol. 11, 80–86 (2014).

    Article  PubMed  Google Scholar 

  78. Williamson, D. A. et al. Clinical and molecular correlates of virulence in Escherichia coli causing bloodstream infection following transrectal ultrasound-guided (TRUS) prostate biopsy. J. Antimicrob. Chemother. 68, 2898–2906 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Carignan, A. et al. Increasing risk of infectious complications after transrectal ultrasound-guided prostate biopsies: time to reassess antimicrobial prophylaxis? Eur. Urol. 62, 453–459 (2012).

    Article  PubMed  Google Scholar 

  80. Lundstrom, K. J. et al. Nationwide population based study of infections after transrectal ultrasound guided prostate biopsy. J. Urol. 192, 1116–1122 (2014).

    Article  PubMed  Google Scholar 

  81. Wagenlehner, F. M. E. et al. Infective complications after prostate biopsy: outcome of the global prevalence study of infections in urology (GPIU) 2010 and 2011, a prospective multinational multicentre prostate biopsy study. Eur. Urol. 63, 521–527 (2013).

    Article  PubMed  Google Scholar 

  82. Womble, P. R. et al. Infection related hospitalizations after prostate biopsy in a statewide quality improvement collaborative. J. Urol. 191, 1787–1792 (2014).

    Article  PubMed  Google Scholar 

  83. Williamson, D. A., Masters, J., Freeman, J. & Roberts, S. Travel-associated extended-spectrum beta-lactamase-producing Escherichia coli bloodstream infection following transrectal ultrasound-guided prostate biopsy. BJU Int. 109, E21–E22 (2012).

    Article  PubMed  Google Scholar 

  84. Williamson, D. A. et al. Escherichia coli bloodstream infection after transrectal ultrasound-guided prostate biopsy: implications of fluoroquinolone-resistant sequence type 131 as a major causative pathogen. Clin. Infect. Dis. 54, 1406–1412 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Roberts, M. J. et al. Baseline prevalence of antimicrobial resistance and subsequent infection following prostate biopsy using empirical or altered prophylaxis: a bias-adjusted meta-analysis. Int. J. Antimicrob. Agents 43, 301–309 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Djavan, B., Remzi, M., Schulman, C. C., Marberger, M. & Zlotta, A. R. Repeat prostate biopsy: who, how and when?: a review. Eur. Urol. 42, 93–103 (2002).

    Article  PubMed  Google Scholar 

  87. Klotz, L. et al. Clinical results of long-term follow-up of a large, active surveillance cohort with localized prostate cancer. J. Clin. Oncol. 28, 126–131 (2010).

    Article  PubMed  Google Scholar 

  88. Bangma, C. H., Bul, M. & Roobol, M. The Prostate cancer Research International: Active Surveillance study. Curr. Opin. Urol. 22, 216–221 (2012).

    Article  PubMed  Google Scholar 

  89. Ehdaie, B. et al. The impact of repeat biopsies on infectious complications in men with prostate cancer on active surveillance. J. Urol. 191, 660–664 (2014).

    Article  PubMed  Google Scholar 

  90. Adibi, M., Pearle, M. S. & Lotan, Y. Cost-effectiveness of standard vs intensive antibiotic regimens for transrectal ultrasonography (TRUS)-guided prostate biopsy prophylaxis. BJU Int. 110, E86–E91 (2012).

    Article  PubMed  Google Scholar 

  91. Batura, D. & Gopal Rao, G. The national burden of infections after prostate biopsy in England and Wales: a wake-up call for better prevention. J. Antimicrob. Chemother. 68, 247–249 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Nam, R. K. et al. Increasing hospital admission rates for urological complications after transrectal ultrasound guided prostate biopsy. J. Urol. 183, 963–968 (2010).

    Article  PubMed  Google Scholar 

  93. Gopal Rao, G. & Batura, D. Emergency hospital admissions attributable to infective complications of prostate biopsy despite appropriate prophylaxis: need for additional infection prevention strategies? Int. Urol. Nephrol. 46, 309–315 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Zani, E. L., Clark, O. A. & Rodrigues Netto, N. Jr. Antibiotic prophylaxis for transrectal prostate biopsy. Cochrane Database of Systematic Reviews, Issue 5. Art. No.: CD006576. http://dx.doi.org/10.1002/14651858.CD006576.pub2.

  95. El-Hakim, A. & Moussa, S. CUA guidelines on prostate biopsy methodology. Can. Urol. Assoc. J. 4, 89–94 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Davis, M., Sofer, M., Kim, S. S. & Soloway, M. S. The procedure of transrectal ultrasound guided biopsy of the prostate: a survey of patient preparation and biopsy technique. J. Urol. 167, 566–570 (2002).

    Article  PubMed  Google Scholar 

  97. Vance-Bryan, K., Guay, D. R. & Rotschafer, J. C. Clinical pharmacokinetics of ciprofloxacin. Clin. Pharmacokinet. 19, 434–461 (1990).

    Article  CAS  PubMed  Google Scholar 

  98. Goto, T. et al. Diffusion of piperacillin, cefotiam, minocycline, amikacin and ofloxacin into the prostate. Int. J. Urol. 5, 243–246 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Gonzalez, C. et al. AUA/SUNA White Paper on the Incidence, Prevention and Treatment of Complications Related to Prostate Needle Biopsy. American Urological Association [online], (2012).

    Google Scholar 

  100. Kehinde, E. O., Al-Maghrebi, M., Sheikh, M. & Anim, J. T. Combined ciprofloxacin and amikacin prophylaxis in the prevention of septicemia after transrectal ultrasound guided biopsy of the prostate. J. Urol. 189, 911–915 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Batura, D., Rao, G. G., Bo Nielsen, P. & Charlett, A. Adding amikacin to fluoroquinolone-based antimicrobial prophylaxis reduces prostate biopsy infection rates. BJU Int. 107, 760–764 (2011).

    Article  PubMed  Google Scholar 

  102. Rhodes, N. J. et al. Optimal timing of oral fosfomycin administration for pre-prostate biopsy prophylaxis. J. Antimicrob. Chemother. 70, 2068–2073 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Gardiner, B. J. et al. Is fosfomycin a potential treatment alternative for multidrug-resistant gram-negative prostatitis? Clin. Infect. Dis. 58, e101–e105 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Yang, J. C., Tang, J., Li, Y., Fei, X. & Shi, H. Contrast-enhanced transrectal ultrasound for assessing vascularization of hypoechoic BPH nodules in the transition and peripheral zones: comparison with pathological examination. Ultrasound Med. Biol. 34, 1758–1764 (2008).

    Article  PubMed  Google Scholar 

  105. Ongun, S., Aslan, G. & Avkan-Oguz, V. The effectiveness of single-dose fosfomycin as antimicrobial prophylaxis for patients undergoing transrectal ultrasound-guided biopsy of the prostate. Urol. Int. 89, 439–444 (2012).

    Article  PubMed  CAS  Google Scholar 

  106. Lista, F. et al. Efficacy and safety of fosfomycin-trometamol in the prophylaxis for transrectal prostate biopsy. Prospective randomized comparison with ciprofloxacin. Actas Urol. Esp. 38, 391–316 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Dewar, S., Reed, L. C. & Koerner, R. J. Emerging clinical role of pivmecillinam in the treatment of urinary tract infection in the context of multidrug-resistant bacteria. J. Antimicrob. Chemother. 69, 303–308 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Losco, G., Studd, R. & Blackmore, T. Ertapenem prophylaxis reduces sepsis after transrectal biopsy of the prostate. BJU Int. 113 (Suppl. 2), 69–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Shakil, J. et al. Use of outpatient parenteral antimicrobial therapy for transrectal ultrasound-guided prostate biopsy prophylaxis in the setting of community-associated multidrug-resistant Escherichia coli rectal colonization. Urology 83, 710–713 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Armand-Lefevre, L. et al. Emergence of imipenem-resistant gram-negative bacilli in intestinal flora of intensive care patients. Antimicrob. Agents Chemother. 57, 1488–1495 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liss, M. A. et al. Fluoroquinolone resistant rectal colonization predicts risk of infectious complications after transrectal prostate biopsy. J. Urol. 192, 1673–1678 (2014).

    Article  PubMed  Google Scholar 

  112. Liss, M., Nakamura, K. & Peterson, E. Targeted prophylaxis prior to transrectal prostate biopsy: a comparison of broth enrichment to direct plating for the evaluation of rectal cultures. J. Urol. 187, e439 (2012).

    Google Scholar 

  113. Taylor, A. K. et al. Targeted antimicrobial prophylaxis using rectal swab cultures in men undergoing transrectal ultrasound guided prostate biopsy is associated with reduced incidence of postoperative infectious complications and cost of care. J. Urol. 187, 1275–1279 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Duplessis, C. A. et al. Rectal cultures before transrectal ultrasound-guided prostate biopsy reduce post-prostatic biopsy infection rates. Urology 79, 556–561 (2012).

    Article  PubMed  Google Scholar 

  115. Suwantarat, N. et al. Modification of antimicrobial prophylaxis based on rectal culture results to prevent fluoroquinolone-resistant Escherichia coli infections after prostate biopsy. Infect. Control Hosp. Epidemiol. 34, 973–976 (2013).

    Article  PubMed  Google Scholar 

  116. Pu, C. et al. Reducing the risk of infection for transrectal prostate biopsy with povidone-iodine: a systematic review and meta-analysis. Int. Urol. Nephrol. 46, 1691–1698 (2014).

    Article  PubMed  Google Scholar 

  117. Issa, M. M. et al. Formalin disinfection of biopsy needle minimizes the risk of sepsis following prostate biopsy. J. Urol. 190, 1769–1775 (2013).

    Article  PubMed  Google Scholar 

  118. Shen, P. F. et al. The results of transperineal versus transrectal prostate biopsy: a systematic review and meta-analysis. Asian J. Androl. 14, 310–315 (2012).

    Article  PubMed  Google Scholar 

  119. Grummet, J. P. et al. Sepsis and 'superbugs': should we favour the transperineal over the transrectal approach for prostate biopsy? BJU Int. 114, 384–388 (2014).

    PubMed  Google Scholar 

  120. Overduin, C. G., Futterer, J. J. & Barentsz, J. O. MRI-guided biopsy for prostate cancer detection: a systematic review of current clinical results. Curr. Urol. Rep. 14, 209–213 (2013).

    Article  PubMed  Google Scholar 

  121. Steensels, D. et al. Fluoroquinolone-resistant E. coli in intestinal flora of patients undergoing transrectal ultrasound-guided prostate biopsy—should we reassess our practices for antibiotic prophylaxis? Clin. Microbiol. Infect. 18, 575–581 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Patel, U. et al. Infection after transrectal ultrasonography-guided prostate biopsy: increased relative risks after recent international travel or antibiotic use. BJU Int. 109, 1781–1785 (2012).

    Article  PubMed  Google Scholar 

  123. Loeb, S., Carter, H. B., Berndt, S. I., Ricker, W. & Schaeffer, E. M. Complications after prostate biopsy: data from SEER-Medicare. J. Urol. 186, 1830–1834 (2011).

    Article  PubMed  Google Scholar 

  124. Bruyere, F. et al. Prosbiotate: a multicenter, prospective analysis of infectious complications after prostate biopsy. J. Urol. 193, 145–150 (2015).

    Article  PubMed  Google Scholar 

  125. Gupta, K. et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 52, e103–e120 (2011).

    Article  PubMed  Google Scholar 

  126. Grigoryan, L., Trautner, B. W. & Gupta, K. Diagnosis and management of urinary tract infections in the outpatient setting: a review. JAMA 312, 1677–1684 (2014).

    Article  PubMed  CAS  Google Scholar 

  127. Lipsky, B. A. Prostatitis and urinary tract infection in men: what's new; what's true? Am. J. Med. 106, 327–334 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Dow, G. et al. A prospective, randomized trial of 3 or 14 days of ciprofloxacin treatment for acute urinary tract infection in patients with spinal cord injury. Clin. Infect. Dis. 39, 658–664 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Drekonja, D. M., Rector, T. S., Cutting, A. & Johnson, J. R. Urinary tract infection in male veterans: treatment patterns and outcomes. JAMA Intern. Med. 173, 62–68 (2013).

    Article  PubMed  Google Scholar 

  130. Sandberg, T. et al. Ciprofloxacin for 7 days versus 14 days in women with acute pyelonephritis: a randomised, open-label and double-blind, placebo-controlled, non-inferiority trial. Lancet 380, 484–490 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Eliakim-Raz, N., Yahav, D., Paul, M. & Leibovici, L. Duration of antibiotic treatment for acute pyelonephritis and septic urinary tract infection—7 days or less versus longer treatment: systematic review and meta-analysis of randomized controlled trials. J. Antimicrob. Chemother. 68, 2183–2191 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Bursle, E. C. et al. Risk factors for urinary catheter associated bloodstream infection. J. Infect. 70, 585–591 (2015).

    Article  PubMed  Google Scholar 

  133. Leis, J. A. et al. Reducing antimicrobial therapy for asymptomatic bacteriuria among noncatheterized inpatients: a proof-of-concept study. Clin. Infect. Dis. 58, 980–983 (2014).

    Article  PubMed  Google Scholar 

  134. Lee, C. S. & Doi, Y. Therapy of infections due to carbapenem-resistant Gram-negative pathogens. Infect. Chemother. 46, 149–164 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Prasad, P., Sun, J., Danner, R. L. & Natanson, C. Excess deaths associated with tigecycline after approval based on noninferiority trials. Clin. Infect. Dis. 54, 1699–1709 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhanel, G. G. et al. Ceftazidime-avibactam: a novel cephalosporin/beta-lactamase inhibitor combination. Drugs 73, 159–177 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Drawz, S. M., Papp-Wallace, K. M. & Bonomo, R. A. New beta-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob. Agents Chemother. 58, 1835–1846 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Vazquez, J. A. et al. Efficacy and safety of ceftazidime-avibactam versus imipenem-cilastatin in the treatment of complicated urinary tract infections, including acute pyelonephritis, in hospitalized adults: results of a prospective, investigator-blinded, randomized study. Curr. Med. Res. Opin. 28, 1921–1931 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Sader, H. S., Farrell, D. J., Flamm, R. K. & Jones, R. N. Ceftolozane/tazobactam activity tested against aerobic Gram-negative organisms isolated from intra-abdominal and urinary tract infections in European and United States hospitals (2012). J. Infect. 69, 266–277 (2014).

    Article  PubMed  Google Scholar 

  140. Poulikakos, P. & Falagas, M. E. Aminoglycoside therapy in infectious diseases. Expert Opin. Pharmacother. 14, 1585–1597 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  142. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  143. Papp-Wallace, K. M., Endimiani, A., Taracila, M. A. & Bonomo, R. A. Carbapenems: past, present, and future. Antimicrob. Agents Chemother. 55, 4943–4960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang, X. et al. Biapenem versus meropenem in the treatment of bacterial infections: a multicenter, randomized, controlled clinical trial. Indian J. Med. Res. 138, 995–1002 (2013).

    PubMed  PubMed Central  Google Scholar 

  145. Livermore, D. M. & Tulkens, P. M. Temocillin revived. J. Antimicrob. Chemother. 63, 243–245 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Balakrishnan, I. et al. Temocillin use in England: clinical and microbiological efficacies in infections caused by extended-spectrum and/or derepressed AmpC beta-lactamase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 66, 2628–2631 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Naber, K. G., Niggemann, H., Stein, G. & Stein, G. Review of the literature and individual patients' data meta-analysis on efficacy and tolerance of nitroxoline in the treatment of uncomplicated urinary tract infections. BMC Infect. Dis. 14, 628 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Fishman, N. et al. Policy Statement on Antimicrobial Stewardship by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), and the Pediatric Infectious Diseases Society (PIDS). Infect. Control Hosp. Epidemiol. 33, 322–327 (2012).

    Article  Google Scholar 

  149. Darouiche, R. O. & Hull, R. A. Bacterial interference for prevention of urinary tract infection. Clin. Infect. Dis. 55, 1400–1407 (2012).

    Article  PubMed  Google Scholar 

  150. Andersson, P. et al. Persistence of Escherichia coli bacteriuria is not determined by bacterial adherence. Infect. Immun. 59, 2915–2921 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Roos, V., Ulett, G. C., Schembri, M. A. & Klemm, P. The asymptomatic bacteriuria Escherichia coli strain 83972 outcompetes uropathogenic E. coli strains in human urine. Infect. Immun. 74, 615–624 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Darouiche, R. O. et al. Multicenter randomized controlled trial of bacterial interference for prevention of urinary tract infection in patients with neurogenic bladder. Urology 78, 341–346 (2011).

    Article  PubMed  Google Scholar 

  153. Klemm, P., Hancock, V. & Schembri, M. A. Mellowing out: adaptation to commensalism by Escherichia coli asymptomatic bacteriuria strain 83972. Infect. Immun. 75, 3688–3695 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sunden, F., Hakansson, L., Ljunggren, E. & Wullt, B. Bacterial interference—is deliberate colonization with Escherichia coli 83972 an alternative treatment for patients with recurrent urinary tract infection? Int. J. Antimicrob. Agents 28 (Suppl. 1), S26–S29 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Koves, B. et al. Rare emergence of symptoms during long-term asymptomatic Escherichia coli 83972 carriage without an altered virulence factor repertoire. J. Urol. 191, 519–528 (2014).

    Article  PubMed  CAS  Google Scholar 

  156. Darouiche, R. O., Thornby, J. I., Cerra-Stewart, C., Donovan, W. H. & Hull, R. A. Bacterial interference for prevention of urinary tract infection: a prospective, randomized, placebo-controlled, double-blind pilot trial. Clin. Infect. Dis. 41, 1531–1534 (2005).

    Article  PubMed  Google Scholar 

  157. Silverman, J. A., Schreiber, H. L., Hooton, T. M. & Hultgren, S. J. From physiology to pharmacy: developments in the pathogenesis and treatment of recurrent urinary tract infections. Curr. Urol. Rep. 14, 448–456 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Cusumano, C. K. & Hultgren, S. J. Bacterial adhesion—a source of alternate antibiotic targets. IDrugs 12, 699–705 (2009).

    CAS  PubMed  Google Scholar 

  159. Cegelski, L., Marshall, G. R., Eldridge, G. R. & Hultgren, S. J. The biology and future prospects of antivirulence therapies. Nat. Rev. Microbiol. 6, 17–27 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cusumano, C. K. et al. Treatment and prevention of urinary tract infection with orally active FimH inhibitors. Sci. Transl. Med. 3, 109ra115 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Pinkner, J. S. et al. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proc. Natl Acad. Sci. USA 103, 17897–17902 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cegelski, L. et al. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat. Chem. Biol. 5, 913–919 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Totsika, M. et al. A FimH inhibitor prevents acute bladder infection and treats chronic cystitis caused by multidrug-resistant uropathogenic Escherichia coli ST131. J. Infect. Dis. 208, 921–928 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Langermann, S. et al. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J. Infect. Dis. 181, 774–778 (2000).

    Article  CAS  PubMed  Google Scholar 

  165. Roberts, J. A. et al. Antibody responses and protection from pyelonephritis following vaccination with purified Escherichia coli PapDG protein. J. Urol. 171, 1682–1685 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Brumbaugh, A. R. & Mobley, H. L. Preventing urinary tract infection: progress toward an effective Escherichia coli vaccine. Expert Rev. Vaccines 11, 663–676 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Alteri, C. J., Hagan, E. C., Sivick, K. E., Smith, S. N. & Mobley, H. L. Mucosal immunization with iron receptor antigens protects against urinary tract infection. PLoS Pathog. 5, e1000586 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

H.M.Z. acknowledges an academic scholarship from the government of Saudi Arabia to pursue postgraduate studies in the field of clinical microbiology and infectious diseases, and research support from the Ministry of National Guard, Health Affairs, King Abdullah International Medical Research Centre, Saudi Arabia (project no. IRBC/193/12). P.N.A.H. is supported by an Australian Postgraduate Award from the University of Queensland, Australia. M.J.R. is supported by a Doctor in Training Research Scholarship from Avant Mutual Group Ltd., a Cancer Council Queensland PhD Scholarship and Professor William Burnett Research Fellowship from the Discipline of Surgery, School of Medicine, The University of Queensland, Australia.

Author information

Authors and Affiliations

Authors

Contributions

H.M.Z., P.N.A.H., M.J.R. and M.D.P. researched data for the article, all authors provided a substantial contribution to the discussion of content, H.M.Z., P.N.A.H., M.J.R., P.A.T., M.A.S., M.D.P. and D.L.P. helped write the article, and all authors reviewed/edited the manuscript before submission. H.M.Z. and P.N.A.H should be considered joint first authors on the manuscript.

Corresponding author

Correspondence to Hosam M. Zowawi.

Ethics declarations

Competing interests

P.A.T. has received research support from ADAMAS, Baxter, Fabentech, Inviragen, Merlion Pharmaceuticals and Sanofi Pasteur, and has received honoraria from AstraZeneca and Novartis. D.L.P. has participated in advisory boards and received honoraria from AstraZeneca, Bayer, Cubist, Leo Pharmaceuticals, Merck and Pfizer. The other authors declare no competing interests.

Supplementary information

Supplementary Table 1

Studies reporting resistance in Gram-negative uropathogens published 2009–2014 (DOC 127 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zowawi, H., Harris, P., Roberts, M. et al. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat Rev Urol 12, 570–584 (2015). https://doi.org/10.1038/nrurol.2015.199

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing