Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Urine biomarkers in prostate cancer

Abstract

The deficiencies of serum PSA as a prostate-cancer-specific diagnostic test are well recognized. Thus, the development of novel biomarkers for prostate cancer detection remains an important and exciting challenge. Noninvasive urine-based tests are particularly attractive candidates for large-scale screening protocols, and biomarker discovery programs using urine samples have emerged for detecting and predicting aggressiveness of prostate cancer. Some new biomarkers already outperform serum PSA in the diagnosis of this disease. Currently, the PCA3 (prostate cancer antigen 3) urine test is probably the best adjunct to serum PSA for predicting biopsy outcome, and has proven its clinical relevance by surpassing the predictive abilities of traditional serum biomarkers. New research methods are also emerging, and high-throughput technologies will facilitate high-dimensional biomarker discovery. Future approaches will probably integrate proteomic, transcriptomic and multiplex approaches to detect novel biomarkers, and aim to identify combinations of multiple biomarkers to optimize the detection of prostate cancer. In addition, an unmet need remains for markers that differentiate indolent from aggressive cancers, to better inform treatment decisions.

Key Points

  • During the past decade, biomarker discovery programs using urine samples have emerged for detecting and predicting aggressiveness of prostate cancer

  • Three groups of urinary markers can be considered: DNA-based, RNA-based, and protein-based markers

  • A growing body of data suggests that various markers, and particularly the combination of multiple markers, offer promise in this setting

  • One RNA marker, PCA3 (prostate cancer antigen 3), has progressed past the early phases of discovery and development and demonstrated clinical utility in multicenter studies

  • Future work will have to integrate proteomic, transcriptomic and multiplex approaches and aim to identify combinations of multiple biomarkers to optimize the detection of prostate cancer

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PCA3 versus PSA biomarkers for the diagnosis of prostate cancer.
Figure 2: The strong androgen-regulated TMPRSS2 gene transcriptional promoter becomes fused to the ERG gene to form an androgen-regulated TMPRSS2–ERG fusion gene (middle).
Figure 3: ROC curves for the diagnosis of prostate cancer using mRNA markers.

Similar content being viewed by others

References

  1. Ferlay, J. et al. Estimates of the cancer incidence and mortality in Europe in 2006. Ann. Oncol. 18, 581–592 (2007).

    CAS  PubMed  Google Scholar 

  2. Jemal, A. et al. Cancer statistics, 2009. CA Cancer J. Clin. 59, 225–249 (2009).

    PubMed  Google Scholar 

  3. Andriole, G. L. et al. Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med. 360, 1310–1319 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Schroder, F. H. et al. Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med. 360, 1320–1328 (2009).

    PubMed  Google Scholar 

  5. Duffy, M. J. Can molecular markers now be used for early diagnosis of malignancy? Clin. Chem. 41, 1410–1413 (1995).

    CAS  PubMed  Google Scholar 

  6. Harden, S. V. et al. Quantitative GSTP1 methylation and the detection of prostate adenocarcinoma in sextant biopsies. J. Natl Cancer Inst. 95, 1634–1637 (2003).

    CAS  PubMed  Google Scholar 

  7. Bryzgunova, O. E., Morozkin, E. S., Yarmoschuk, S. V., Vlassov, V. V. & Laktionov, P. P. Methylation-specific sequencing of GSTP1 gene promoter in circulating/extracellular DNA from blood and urine of healthy donors and prostate cancer patients. Ann. NY Acad. Sci. 1137, 222–225 (2008).

    CAS  PubMed  Google Scholar 

  8. Cairns, P. et al. Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin. Cancer Res. 7, 2727–2730 (2001).

    CAS  PubMed  Google Scholar 

  9. Crocitto, L. E. et al. Prostate cancer molecular markers GSTP1 and hTERT in expressed prostatic secretions as predictors of biopsy results. Urology 64, 821–825 (2004).

    PubMed  Google Scholar 

  10. Goessl, C. et al. Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res. 60, 5941–5945 (2000).

    CAS  PubMed  Google Scholar 

  11. Goessl, C. et al. DNA-based detection of prostate cancer in urine after prostatic massage. Urology 58, 335–338 (2001).

    CAS  PubMed  Google Scholar 

  12. Gonzalgo, M. L., Pavlovich, C. P., Lee, S. M. & Nelson, W. G. Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin. Cancer Res. 9, 2673–2677 (2003).

    CAS  PubMed  Google Scholar 

  13. Jeronimo, C. et al. Quantitative GSTP1 hypermethylation in bodily fluids of patients with prostate cancer. Urology 60, 1131–1135 (2002).

    PubMed  Google Scholar 

  14. Woodson, K. et al. The usefulness of the detection of GSTP1 methylation in urine as a biomarker in the diagnosis of prostate cancer. J. Urol. 179, 508–511 (2008).

    CAS  PubMed  Google Scholar 

  15. Hoque, M. O. et al. Quantitative methylation-specific polymerase chain reaction gene patterns in urine sediment distinguish prostate cancer patients from control subjects. J. Clin. Oncol. 23, 6569–6575 (2005).

    CAS  PubMed  Google Scholar 

  16. Payne, S. R. et al. DNA methylation biomarkers of prostate cancer: confirmation of candidates and evidence urine is the most sensitive body fluid for non-invasive detection. Prostate 69, 1257–1269 (2009).

    CAS  PubMed  Google Scholar 

  17. Roupret, M. et al. Molecular detection of localized prostate cancer using quantitative methylation-specific PCR on urinary cells obtained following prostate massage. Clin. Cancer Res. 13, 1720–1725 (2007).

    CAS  PubMed  Google Scholar 

  18. Baden, J. et al. Multicenter evaluation of an investigational prostate cancer methylation assay. J. Urol. 182, 1186–1193 (2009).

    CAS  PubMed  Google Scholar 

  19. Chiou, C. C. et al. Urinary 8-hydroxydeoxyguanosine and its analogs as DNA marker of oxidative stress: development of an ELISA and measurement in both bladder and prostate cancers. Clin. Chim. Acta 334, 87–94 (2003).

    CAS  PubMed  Google Scholar 

  20. Cussenot, O., Teillac, P., Berthon, P. & Latil, A. Noninvasive detection of genetic instability in cells from prostatic secretion as a marker of prostate cancer. Eur. J. Intern. Med. 12, 17–19 (2001).

    CAS  PubMed  Google Scholar 

  21. Thuret, R. et al. Clinical relevance of genetic instability in prostatic cells obtained by prostatic massage in early prostate cancer. Br. J. Cancer 92, 236–240 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bussemakers, M. J. et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 59, 5975–5979 (1999).

    CAS  PubMed  Google Scholar 

  23. Hessels, D. et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur. Urol. 44, 8–15 (2003).

    CAS  PubMed  Google Scholar 

  24. Groskopf, J. et al. APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer. Clin. Chem. 52, 1089–1095 (2006).

    CAS  PubMed  Google Scholar 

  25. Hessels, D. & Schalken, J. A. The use of PCA3 in the diagnosis of prostate cancer. Nat. Rev. Urol. 6, 255–261 (2009).

    CAS  PubMed  Google Scholar 

  26. Deras, I. L. et al. PCA3: a molecular urine assay for predicting prostate biopsy outcome. J. Urol. 179, 1587–1592 (2008).

    PubMed  Google Scholar 

  27. Haese, A. et al. Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur. Urol. 54, 1081–1088 (2008).

    PubMed  Google Scholar 

  28. Marks, L. S. et al. PCA3 molecular urine assay for prostate cancer in men undergoing repeat biopsy. Urology 69, 532–535 (2007).

    PubMed  Google Scholar 

  29. Nakanishi, H. et al. PCA3 molecular urine assay correlates with prostate cancer tumor volume: implication in selecting candidates for active surveillance. J. Urol. 179, 1804–1809 (2008).

    PubMed  Google Scholar 

  30. Whitman, E. J. et al. PCA3 score before radical prostatectomy predicts extracapsular extension and tumor volume. J. Urol. 180, 1975–1978 (2008).

    PubMed  Google Scholar 

  31. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    CAS  PubMed  Google Scholar 

  32. Clark, J. P. & Cooper, C. S. ETS gene fusions in prostate cancer. Nat. Rev. Urol. 6, 429–439 (2009).

    CAS  PubMed  Google Scholar 

  33. Laxman, B. et al. Noninvasive detection of TMPRSS2:ERG fusion transcripts in the urine of men with prostate cancer. Neoplasia 8, 885–888 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hessels, D. et al. Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clin. Cancer Res. 13, 5103–5108 (2007).

    CAS  PubMed  Google Scholar 

  35. Jiang, Z. & Woda, B. A. Diagnostic utility of alpha-methylacyl CoA racemase (P504S) on prostate needle biopsy. Adv. Anat. Pathol. 11, 316–321 (2004).

    CAS  PubMed  Google Scholar 

  36. Zielie, P. J. et al. A novel diagnostic test for prostate cancer emerges from the determination of alpha-methylacyl-coenzyme a racemase in prostatic secretions. J. Urol. 172, 1130–1133 (2004).

    CAS  PubMed  Google Scholar 

  37. Ouyang, B. et al. A duplex quantitative polymerase chain reaction assay based on quantification of alpha-methylacyl-CoA racemase transcripts and prostate cancer antigen 3 in urine sediments improved diagnostic accuracy for prostate cancer. J. Urol. 181, 2508–2513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zehentner, B. K. et al. Detection of alpha-methylacyl-coenzyme-A racemase transcripts in blood and urine samples of prostate cancer patients. Mol. Diagn. Ther. 10, 397–403 (2006).

    CAS  PubMed  Google Scholar 

  39. Rogers, C. G. et al. Prostate cancer detection on urinalysis for alpha methylacyl coenzyme a racemase protein. J. Urol. 172, 1501–1503 (2004).

    CAS  PubMed  Google Scholar 

  40. Dhanasekaran, S. M. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001).

    CAS  PubMed  Google Scholar 

  41. Laxman, B. et al. A first-generation multiplex biomarker analysis of urine for the early detection of prostate cancer. Cancer Res. 68, 645–649 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Varambally, S. et al. Golgi protein GOLM1 is a tissue and urine biomarker of prostate cancer. Neoplasia 10, 1285–1294 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tomlins, S. A. et al. The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell 13, 519–528 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bai, V. U. et al. Identification of prostate cancer mRNA markers by averaged differential expression and their detection in biopsies, blood, and urine. Proc. Natl Acad. Sci. USA 104, 2343–2348 (2007).

    CAS  PubMed  Google Scholar 

  45. Mitchell, P. J. et al. Can urinary exosomes act as treatment response markers in prostate cancer? J. Transl. Med. 7, 4 (2009).

    PubMed  PubMed Central  Google Scholar 

  46. Nilsson, J. et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br. J. Cancer 100, 1603–1607 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Graves, H. C., Sensabaugh, G. F. & Blake, E. T. Postcoital detection of a male-specific semen protein. Application to the investigation of rape. N. Engl. J. Med. 312, 338–343 (1985).

    CAS  PubMed  Google Scholar 

  49. Iwakiri, J., Granbois, K., Wehner, N., Graves, H. C. & Stamey, T. An analysis of urinary prostate specific antigen before and after radical prostatectomy: evidence for secretion of prostate specific antigen by the periurethral glands. J. Urol. 149, 783–786 (1993).

    CAS  PubMed  Google Scholar 

  50. Irani, J. et al. Urinary/serum prostate-specific antigen ratio: comparison with free/total serum prostate-specific antigen ratio in improving prostate cancer detection. Urology 65, 533–537 (2005).

    PubMed  Google Scholar 

  51. Bolduc, S. et al. Urinary PSA: a potential useful marker when serum PSA is between 2.5 ng/mL and 10 ng/mL. Can. Urol. Assoc. J. 1, 377–381 (2007).

    PubMed  PubMed Central  Google Scholar 

  52. Pannek, J. et al. Molecular forms of prostate-specific antigen and human kallikrein 2 (hK2) in urine are not clinically useful for early detection and staging of prostate cancer. Urology 50, 715–721 (1997).

    CAS  PubMed  Google Scholar 

  53. Sommerfeld, H. J. et al. Telomerase activity: a prevalent marker of malignant human prostate tissue. Cancer Res. 56, 218–222 (1996).

    CAS  PubMed  Google Scholar 

  54. Botchkina, G. I. et al. Noninvasive detection of prostate cancer by quantitative analysis of telomerase activity. Clin. Cancer Res. 11, 3243–3249 (2005).

    CAS  PubMed  Google Scholar 

  55. Meid, F. H., Gygi, C. M., Leisinger, H. J., Bosman, F. T. & Benhattar, J. The use of telomerase activity for the detection of prostatic cancer cells after prostatic massage. J. Urol. 165, 1802–1805 (2001).

    CAS  PubMed  Google Scholar 

  56. Vicentini, C. et al. Detection of telomerase activity in prostate massage samples improves differentiating prostate cancer from benign prostatic hyperplasia. J. Cancer Res. Clin. Oncol. 130, 217–221 (2004).

    CAS  PubMed  Google Scholar 

  57. Madoz-Gurpide, J. et al. Proteomics-based validation of genomic data: applications in colorectal cancer diagnosis. Mol. Cell Proteomics 5, 1471–1483 (2006).

    CAS  PubMed  Google Scholar 

  58. Schostak, M. et al. Annexin A3 in urine: a highly specific noninvasive marker for prostate cancer early detection. J. Urol. 181, 343–353 (2009).

    CAS  PubMed  Google Scholar 

  59. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161–174 (2002).

    CAS  PubMed  Google Scholar 

  60. Saito, M. et al. Proteome analysis of gelatin-bound urinary proteins from patients with bladder cancers. Eur. Urol. 48, 865–871 (2005).

    CAS  PubMed  Google Scholar 

  61. Roy, R. et al. Tumor-specific urinary matrix metalloproteinase fingerprinting: identification of high molecular weight urinary matrix metalloproteinase species. Clin. Cancer Res. 14, 6610–6617 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ornstein, D. K. & Tyson, D. R. Proteomics for the identification of new prostate cancer biomarkers. Urol. Oncol. 24, 231–236 (2006).

    CAS  PubMed  Google Scholar 

  63. Theodorescu, D. et al. Discovery and validation of urinary biomarkers for prostate cancer. Proteomics Clin. Appl. 2, 556–570 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rehman, I. et al. Proteomic analysis of voided urine after prostatic massage from patients with prostate cancer: a pilot study. Urology 64, 1238–1243 (2004).

    CAS  PubMed  Google Scholar 

  65. Muller, H., Haug, U., Rothenbacher, D., Stegmaier, C. & Brenner, H. Evaluation of serum and urinary myeloid related protein-14 as a marker for early detection of prostate cancer. J. Urol. 180, 1309–1312 (2008).

    PubMed  Google Scholar 

  66. Sreekumar, A. et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lu, Q. et al. Identification of extracellular delta-catenin accumulation for prostate cancer detection. Prostate 69, 411–418 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ma, P. C., Maulik, G., Christensen, J. & Salgia, R. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev. 22, 309–325 (2003).

    CAS  PubMed  Google Scholar 

  69. Pisters, L. L. et al. c-Met proto-oncogene expression in benign and malignant human prostate tissues. J. Urol. 154, 293–298 (1995).

    CAS  PubMed  Google Scholar 

  70. Russo, A. L. et al. Urine analysis and protein networking identify met as a marker of metastatic prostate cancer. Clin. Cancer Res. 15, 4292–4298 (2009).

    CAS  PubMed  Google Scholar 

  71. Hutchinson, L. M. et al. Development of a sensitive and specific enzyme-linked immunosorbent assay for thymosin beta15, a urinary biomarker of human prostate cancer. Clin. Biochem. 38, 558–571 (2005).

    CAS  PubMed  Google Scholar 

  72. Teni, T. R., Sheth, A. R., Kamath, M. R. & Sheth, N. A. Serum and urinary prostatic inhibin-like peptide in benign prostatic hyperplasia and carcinoma of prostate. Cancer Lett. 43, 9–14 (1988).

    CAS  PubMed  Google Scholar 

  73. Stoeber, K. et al. Diagnosis of genito-urinary tract cancer by detection of minichromosome maintenance 5 protein in urine sediments. J. Natl Cancer Inst. 94, 1071–1079 (2002).

    CAS  PubMed  Google Scholar 

  74. Tanaka, M. et al. Rapid and quantitative detection of human septin family Bradeion as a practical diagnostic method of colorectal and urologic cancers. Med. Sci. Monit. 9, MT61–MT68 (2003).

    CAS  PubMed  Google Scholar 

  75. Lombardo, M. E. & Hudson, P. B. Preliminary evaluation of 5 alpha-reductase type 2 in urine as a potential marker for prostate disease. Steroids 62, 682–685 (1997).

    CAS  PubMed  Google Scholar 

  76. Adamson, A. S., Francis, J. L., Witherow, R. O. & Snell, M. E. Urinary tissue factor levels in prostatic carcinoma: a potential marker of metastatic spread? Br. J. Urol. 71, 587–592 (1993).

    CAS  PubMed  Google Scholar 

  77. Lwaleed, B. A., Francis, J. L. & Chisholm, M. Urinary tissue factor levels in patients with bladder and prostate cancer. Eur. J. Surg. Oncol. 26, 44–49 (2000).

    CAS  PubMed  Google Scholar 

  78. Fernandez, C., Rifai, N., Wenger, A. S., Mickey, D. D. & Silverman, L. M. A preliminary study of urinary transferrin as a marker for prostatic cancer. Clin. Chim. Acta 161, 335–339 (1986).

    CAS  PubMed  Google Scholar 

  79. van Dieijen-Visser, M. P., Hendriks, M. W., Delaere, K. P., Gijzen, A. H. & Brombacher, P. J. The diagnostic value of urinary transferrin compared to serum prostatic specific antigen (PSA) and prostatic acid phosphatase (PAP) in patients with prostatic cancer. Clin. Chim. Acta 177, 77–80 (1988).

    CAS  PubMed  Google Scholar 

  80. van Gils, M. P. et al. Molecular PCA3 diagnostics on prostatic fluid. Prostate 67, 881–887 (2007).

    CAS  PubMed  Google Scholar 

  81. Campos-Fernandes, J. L. et al. Prostate cancer detection rate in patients with repeated extended 21-sample needle biopsy. Eur. Urol. 55, 600–606 (2009).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre de la Taille.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ploussard, G., de la Taille, A. Urine biomarkers in prostate cancer. Nat Rev Urol 7, 101–109 (2010). https://doi.org/10.1038/nrurol.2009.261

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2009.261

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing