Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of hedgehog signalling in skeletal health and disease

Key Points

  • Hedgehog signalling regulates several cellular processes that are critical in bone development

  • Osteoarthritis and cartilaginous neoplasia are associated with activation of the hedgehog signalling pathway

  • Several agents that inhibit hedgehog signalling could be used therapeutically to target this pathway

  • Inhibition of hedgehog signalling or modulation of the expression of downstream target genes are potential modalities for the treatment of osteoarthritis and cartilaginous tumours

  • These two modalities could also be used to increase the effectiveness of strategies to improve bone and joint regeneration

Abstract

Hedgehog ligands bind to protein patched homologue 1 (PTC), a conserved receptor that activates the GLI family of transcription factors, which are involved in development, disease and skeletal repair processes. During embryonic development, hedgehog signalling helps to pattern the limbs and plays a critical part in regulating chondrocyte differentiation and osteogenesis during the longitudinal growth of long bones. This signalling pathway also regulates mesenchymal cell differentiation during skeletal repair and regeneration. In pathologic and degenerative processes, such as osteoarthritis or cartilaginous tumour formation, hedgehog signalling is dysregulated. Several pharmacologic strategies can modulate hedgehog signalling, and targeting this pathway could lead to the development of novel therapeutic approaches. For example, by precisely regulating the level of activity of the hedgehog signalling pathway, the pace of degeneration in osteoarthritis could be slowed, bone repair could be enhanced, and cartilaginous tumour cell viability could be inhibited. As such, regulation of hedgehog signalling could be manipulated to safeguard skeletal health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of growth plate chondrocytes in long bone development.
Figure 2: The hedgehog signalling pathway in Drosophila melanogaster and mammals.
Figure 3: The three mammalian GLI transcription factors (GLI1–GLI3) are homologues of Drosophila Cubitus interruptus (Ci).
Figure 4: In vertebrates, primary cilia can act as an organizing centre for processing GLI proteins.
Figure 5: A model of the regulation of growth plate chondrocyte differentiation by PTHrP and hedgehog signalling.

Similar content being viewed by others

References

  1. Gofflot, F. et al. Molecular mechanisms underlying limb anomalies associated with cholesterol deficiency during gestation: implications of hedgehog signaling. Hum. Mol. Genet. 12, 1187–1198 (2003).

    CAS  PubMed  Google Scholar 

  2. Varjosalo, M. & Taipale, J. Hedgehog: functions and mechanisms. Genes Dev. 22, 2454–2472 (2008).

    CAS  PubMed  Google Scholar 

  3. Jiang, J. & Hui, C. C. Hedgehog signaling in development and cancer. Dev. Cell 15, 801–812 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Turnpenny, P. D. et al. Abnormal vertebral segmentation and the notch signaling pathway in man. Dev. Dyn. 236, 1456–1474 (2007).

    CAS  PubMed  Google Scholar 

  6. Tiet, T. D. & Alman, B. A. Developmental pathways in musculoskeletal neoplasia: involvement of the Indian Hedgehog–parathyroid hormone-related protein pathway. Pediatr. Res. 53, 539–543 (2003).

    CAS  PubMed  Google Scholar 

  7. Spitz, F. & Duboule, D. Development. The art of making a joint. Science 291, 1713–1714 (2001).

    CAS  PubMed  Google Scholar 

  8. Khillan, J. S. Generation of chondrocytes from embryonic stem cells. Methods Mol. Biol. 330, 161–170 (2006).

    CAS  PubMed  Google Scholar 

  9. Kramer, J., Hegert, C., Hargus, G. & Rohwedel, J. Chondrocytes derived from mouse embryonic stem cells. Cytotechnology 41, 177–187 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tuli, R. et al. Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone. Stem Cells 21, 681–693 (2003).

    CAS  PubMed  Google Scholar 

  11. Prockop, D. J. Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol. Ther. 17, 939–946 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Noth, U. et al. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J. Orthop. Res. 20, 1060–1069 (2002).

    PubMed  Google Scholar 

  13. Hwang, N. S., Varghese, S. & Elisseeff, J. Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS ONE 3, e2498 (2008).

    PubMed  PubMed Central  Google Scholar 

  14. Kronenberg, H. M. Developmental regulation of the growth plate. Nature 423, 332–336 (2003).

    CAS  PubMed  Google Scholar 

  15. Yang, L., Tsang, K. Y., Tang, H. C., Chan, D. & Cheah, K. S. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc. Natl Acad. Sci. USA 111, 12097–12102 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pacifici, M. et al. Hypertrophic chondrocytes. The terminal stage of differentiation in the chondrogenic cell lineage? Ann. NY Acad. Sci. 599, 45–57 (1990).

    CAS  PubMed  Google Scholar 

  17. Chevy, F., Illien, F., Wolf, C. & Roux, C. Limb malformations of rat fetuses exposed to a distal inhibitor of cholesterol biosynthesis. J. Lipid Res. 43, 1192–1200 (2002).

    CAS  PubMed  Google Scholar 

  18. Roux, C. et al. Role of cholesterol in embryonic development. Am. J. Clin. Nutr. 71 (Suppl.), 1270S–1279S (2000).

    CAS  PubMed  Google Scholar 

  19. Cortes, M., Baria, A. T. & Schwartz, N. B. Sulfation of chondroitin sulfate proteoglycans is necessary for proper Indian hedgehog signaling in the developing growth plate. Development 136, 1697–1706 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Guerrero, I. & Chiang, C. A conserved mechanism of Hedgehog gradient formation by lipid modifications. Trends Cell Biol. 17, 1–5 (2007).

    CAS  PubMed  Google Scholar 

  21. Varjosalo, M., Li, S. P. & Taipale, J. Divergence of hedgehog signal transduction mechanism between Drosophila and mammals. Dev. Cell 10, 177–186 (2006).

    CAS  PubMed  Google Scholar 

  22. Liu, Y., Cao, X., Jiang, J. & Jia, J. Fused–Costal2 protein complex regulates Hedgehog-induced Smo phosphorylation and cell-surface accumulation. Genes Dev. 21, 1949–1963 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, C. H. et al. Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell 98, 305–316 (1999).

    CAS  PubMed  Google Scholar 

  24. Murone, M. et al. Gli regulation by the opposing activities of Fused and Suppressor of fused. Nat. Cell Biol. 2, 310–312 (2000).

    CAS  PubMed  Google Scholar 

  25. Pan, Y. & Wang, B. A novel protein-processing domain in Gli2 and Gli3 differentially blocks complete protein degradation by the proteasome. J. Biol. Chem. 282, 10846–10852 (2007).

    CAS  PubMed  Google Scholar 

  26. Marigo, V. & Tabin, C. J. Regulation of Patched by Sonic hedgehog in the developing neural tube. Proc. Natl Acad. Sci. USA 93, 9346–9351 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hojo, H. et al. Gli1 protein participates in hedgehog-mediated specification of osteoblast lineage during endochondral ossification. J. Biol. Chem. 287, 17860–17869 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kesper, D. A., Didt-Koziel, L. & Vortkamp, A. Gli2 activator function in preosteoblasts is sufficient to mediate Ihh-dependent osteoblast differentiation, whereas the repressor function of Gli2 is dispensable for endochondral ossification. Dev. Dyn. 239, 1818–1826 (2010).

    CAS  PubMed  Google Scholar 

  29. Johnson, R. L., Grenier, J. K. & Scott, M. P. Patched overexpression alters wing disc size and pattern: transcriptional and post-transcriptional effects on hedgehog targets. Development 121, 4161–4170 (1995).

    CAS  PubMed  Google Scholar 

  30. Holtz, A. M. et al. Essential role for ligand-dependent feedback antagonism of vertebrate hedgehog signaling by PTCH1, PTCH2 and HHIP1 during neural patterning. Development 140, 3423–3434 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chuang, P. T., Kawcak, T. & McMahon, A. P. Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung. Genes Dev. 17, 342–347 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kogerman, P. et al. Mammalian suppressor-of-fused modulates nuclear–cytoplasmic shuttling of Gli-1. Nat. Cell Biol. 1, 312–319 (1999).

    CAS  PubMed  Google Scholar 

  33. Katoh, Y. & Katoh, M. KIF27 is one of orthologs for Drosophila Costal-2. Int. J. Oncol. 25, 1875–1880 (2004).

    CAS  PubMed  Google Scholar 

  34. Dunaeva, M., Michelson, P., Kogerman, P. & Toftgard, R. Characterization of the physical interaction of Gli proteins with SUFU proteins. J. Biol. Chem. 278, 5116–5122 (2003).

    CAS  PubMed  Google Scholar 

  35. Katoh, Y. & Katoh, M. Characterization of KIF7 gene in silico. Int. J. Oncol. 25, 1881–1886 (2004).

    CAS  PubMed  Google Scholar 

  36. Wheatley, D. N. Primary cilia in normal and pathological tissues. Pathobiology 63, 222–238 (1995).

    CAS  PubMed  Google Scholar 

  37. Liu, A., Wang, B. & Niswander, L. A. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 132, 3103–3111 (2005).

    CAS  PubMed  Google Scholar 

  38. Song, B., Haycraft, C. J., Seo, H. S., Yoder, B. K. & Serra, R. Development of the post-natal growth plate requires intraflagellar transport proteins. Dev. Biol. 305, 202–216 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Poole, C. A., Zhang, Z. J. & Ross, J. M. The differential distribution of acetylated and detyrosinated α-tubulin in the microtubular cytoskeleton and primary cilia of hyaline cartilage chondrocytes. J. Anat. 199, 393–405 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Huangfu, D. & Anderson, K. V. Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development 133, 3–14 (2006).

    CAS  PubMed  Google Scholar 

  41. Haycraft, C. J. et al. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 1, e53 (2005).

    PubMed  PubMed Central  Google Scholar 

  42. Malone, A. M. et al. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc. Natl Acad. Sci. USA 104, 13325–13330 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Vortkamp, A. et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273, 613–622 (1996).

    CAS  PubMed  Google Scholar 

  44. Karp, S. J. et al. Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development 127, 543–548 (2000).

    CAS  PubMed  Google Scholar 

  45. Kobayashi, T. et al. PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps. Development 129, 2977–2986 (2002).

    CAS  PubMed  Google Scholar 

  46. Lanske, B. et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273, 663–666 (1996).

    CAS  PubMed  Google Scholar 

  47. Minina, E. et al. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 128, 4523–4534 (2001).

    CAS  PubMed  Google Scholar 

  48. Minina, E., Kreschel, C., Naski, M. C., Ornitz, D. M. & Vortkamp, A. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev. Cell 3, 439–449 (2002).

    CAS  PubMed  Google Scholar 

  49. Koziel, L., Wuelling, M., Schneider, S. & Vortkamp, A. Gli3 acts as a repressor downstream of Ihh in regulating two distinct steps of chondrocyte differentiation. Development 132, 5249–5260 (2005).

    CAS  PubMed  Google Scholar 

  50. Miao, D. et al. Impaired endochondral bone development and osteopenia in Gli2-deficient mice. Exp. Cell Res. 294, 210–222 (2004).

    CAS  PubMed  Google Scholar 

  51. Mau, E. et al. PTHrP regulates growth plate chondrocyte differentiation and proliferation in a Gli3 dependent manner utilizing hedgehog ligand dependent and independent mechanisms. Dev. Biol. 305, 28–39 (2007).

    CAS  PubMed  Google Scholar 

  52. Epstein, D. J., Marti, E., Scott, M. P. & McMahon, A. P. Antagonizing cAMP-dependent protein kinase A in the dorsal CNS activates a conserved sonic hedgehog signaling pathway. Development 122, 2885–2894 (1996).

    CAS  PubMed  Google Scholar 

  53. Riobo, N. A., Lu, K., Ai, X., Haines, G. M. & Emerson, C. P. Jr. Phosphoinositide 3-kinase and Akt are essential for sonic hedgehog signaling. Proc. Natl Acad. Sci. USA 103, 4505–4510 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang, Y., Guillot, P., Boyd, Y., Lyon, M. F. & McMahon, A. P. Evidence that preaxial polydactyly in the Doublefoot mutant is due to ectopic Indian hedgehog signaling. Development 125, 3123–3132 (1998).

    CAS  PubMed  Google Scholar 

  55. Radhakrishna, U., Wild, A., Grzeschik, K. H. & Antonarakis, S. E. Mutation in GLI3 in postaxial polydactyly type A. Nat. Genet. 17, 269–271 (1997).

    CAS  PubMed  Google Scholar 

  56. Hui, C. C. & Joyner, A. L. A mouse model of Greig cephalopolysyndactyly syndrome: the extra-toes J mutation contains an intragenic deletion of the Gli3 gene. Nat. Genet. 3, 241–246 (1993).

    CAS  PubMed  Google Scholar 

  57. Gao, B. et al. Mutations in IHH, encoding Indian hedgehog, cause brachydactyly type A-1. Nat. Genet. 28, 386–388 (2001).

    CAS  PubMed  Google Scholar 

  58. Spjut, H. J., Dorfman, H. D., Fechner, R. E. & Ackerman, L. V. (eds) Tumours of Bone and Cartilage, Atlas of Tumor Pathology, Second Series, Fasicle 5. 77–110 (Armed Forces Institute of Pathology, 1983).

    Google Scholar 

  59. Levesque, J. et al. (eds) A Clinical Guide to Primary Bone Tumors 98–107 (Williams and Wilkins, 1998).

    Google Scholar 

  60. Schwartz, H. S. et al. The malignant potential of enchondromatosis. J. Bone Joint Surg. Am. 69, 269–274 (1987).

    CAS  PubMed  Google Scholar 

  61. Wuyts, W. & Van Hul, W. Molecular basis of multiple exostoses: mutations in the EXT1 and EXT2 genes. Hum. Mutat. 15, 220–227 (2000).

    CAS  PubMed  Google Scholar 

  62. McCormick, C. et al. The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nat. Genet. 19, 158–161 (1998).

    CAS  PubMed  Google Scholar 

  63. Hecht, J. T. et al. Differentiation-induced loss of heparan sulfate in human exostosis derived chondrocytes. Differentiation 73, 212–221 (2005).

    CAS  PubMed  Google Scholar 

  64. Alvarez, C., Tredwell, S., De Vera, M. & Hayden, M. The genotype–phenotype correlation of hereditary multiple exostoses. Clin. Genet. 70, 122–130 (2006).

    CAS  PubMed  Google Scholar 

  65. Hopyan, S. et al. A mutant PTH/PTHrP type I receptor in enchondromatosis. Nat. Genet. 30, 306–310 (2002).

    PubMed  Google Scholar 

  66. Couvineau, A. et al. PTHR1 mutations associated with Ollier disease result in receptor loss of function. Hum. Mol. Genet. 17, 2766–2775 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ho, L. et al. Gli2 and p53 cooperate to regulate IGFBP-3-mediated chondrocyte apoptosis in the progression from benign to malignant cartilage tumors. Cancer Cell. 16, 126–136 (2009).

    CAS  PubMed  Google Scholar 

  68. Huang, K. & Wu, L. D. Aggrecanase and aggrecan degradation in osteoarthritis: a review. J. Int. Med. Res. 36, 1149–1160 (2008).

    CAS  PubMed  Google Scholar 

  69. Bondeson, J., Wainwright, S., Hughes, C. & Caterson, B. The regulation of the ADAMTS4 and ADAMTS5 aggrecanases in osteoarthritis: a review. Clin. Exp. Rheumatol. 26, 139–145 (2008).

    CAS  PubMed  Google Scholar 

  70. Appleton, C. T., Pitelka, V., Henry, J. & Beier, F. Global analyses of gene expression in early experimental osteoarthritis. Arthritis Rheum. 56, 1854–1868 (2007).

    CAS  PubMed  Google Scholar 

  71. Tchetina, E. V., Squires, G. & Poole, A. R. Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J. Rheumatol. 32, 876–886 (2005).

    CAS  PubMed  Google Scholar 

  72. Aigner, T., Soder, S., Gebhard, P. M., McAlinden, A. & Haag, J. Mechanisms of disease: role of chondrocytes in the pathogenesis of osteoarthritis—structure, chaos and senescence. Nat. Clin. Pract. Rheumatol. 3, 391–399 (2007).

    CAS  PubMed  Google Scholar 

  73. Mak, K. K., Kronenberg, H. M., Chuang, P. T., Mackem, S. & Yang, Y. Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy. Development 135, 1947–1956 (2008).

    CAS  PubMed  Google Scholar 

  74. Lin, A. C. et al. Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat. Med. 15, 1421–1425 (2009).

    CAS  PubMed  Google Scholar 

  75. Ruiz-Heiland, G. et al. Blockade of the hedgehog pathway inhibits osteophyte formation in arthritis. Ann. Rheum. Dis. 71, 400–407 (2012).

    CAS  PubMed  Google Scholar 

  76. Zhou, J. et al. Disrupting the Indian hedgehog signaling pathway in vivo attenuates surgically induced osteoarthritis progression in Col2a1-CreERT2 Ihhfl/fl mice. Arthritis Res. Ther. 16, R11 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Chang, C. F., Ramaswamy, G. & Serra, R. Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms of early osteoarthritis. Osteoarthritis Cartilage 20, 152–161 (2012).

    PubMed  Google Scholar 

  78. Regard, J. B. et al. Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification. Nat. Med. 19, 1505–1512 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Buckland, J. Bone: Hedgehog signalling linked to heterotopic ossification in POH. Nat. Rev. Rheumatol. 9, 636 (2013).

    PubMed  Google Scholar 

  80. Schmidts, M. et al. Mutations in the gene encoding IFT dynein complex component WDR34 cause Jeune asphyxiating thoracic dystrophy. Am. J. Hum. Genet. 93, 932–944 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang, S. & Wang, C. The intraflagellar transport protein IFT80 is required for cilia formation and osteogenesis. Bone 51, 407–417 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ohba, S. et al. Patched1 haploinsufficiency increases adult bone mass and modulates Gli3 repressor activity. Dev. Cell. 14, 689–699 (2008).

    CAS  PubMed  Google Scholar 

  83. Vortkamp, A. et al. Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech. Dev. 71, 65–76 (1998).

    CAS  PubMed  Google Scholar 

  84. Murakami, S. & Noda, M. Expression of Indian hedgehog during fracture healing in adult rat femora. Calcif. Tissue Int. 66, 272–276 (2000).

    CAS  PubMed  Google Scholar 

  85. Baht, G. S., Silkstone, D., Nadesan, P., Whetstone, H. & Alman, B. A. Activation of hedgehog signaling during fracture repair enhances osteoblastic-dependent matrix formation. J. Orthop. Res. 32, 581–586 (2014).

    CAS  PubMed  Google Scholar 

  86. Craft, A. M. et al. Specification of chondrocytes and cartilage tissues from embryonic stem cells. Development 140, 2597–2610 (2013).

    CAS  PubMed  Google Scholar 

  87. Rubin, L. L. & de Sauvage, F. J. Targeting the hedgehog pathway in cancer. Nat. Rev. Drug Discov. 5, 1026–1033 (2006).

    CAS  PubMed  Google Scholar 

  88. De Smaele, E., Ferretti, E. & Gulino, A. Vismodegib, a small-molecule inhibitor of the hedgehog pathway for the treatment of advanced cancers. Curr. Opin. Investig. Drugs 11, 707–718 (2010).

    CAS  PubMed  Google Scholar 

  89. Rockel, J. S. & Alman, B. A. Don't hedge your bets: hedgehog signaling as a central mediator of endochondral bone development and cartilage diseases. J. Orthop. Res. 29, 810–815 (2011).

    CAS  PubMed  Google Scholar 

  90. Kimura, H., Ng, J. M. & Curran, T. Transient inhibition of the hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell 13, 249–260 (2008).

    CAS  PubMed  Google Scholar 

  91. Kim, J. et al. Itraconazole, a commonly used antifungal that inhibits hedgehog pathway activity and cancer growth. Cancer Cell 17, 388–399 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Aravamudhan, A. et al. Osteoinductive small molecules: growth factor alternatives for bone tissue engineering. Curr. Pharm. Des 19, 3420–3428 (2013).

    CAS  PubMed  Google Scholar 

  93. Gellynck, K. et al. Small molecule stimulation enhances bone regeneration but not titanium implant osseointegration. Bone 57, 405–412 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author's research referenced in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the NIH under Award R01AR066765-01 to B.A.A. The content is solely the responsibility of the author and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin A. Alman.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alman, B. The role of hedgehog signalling in skeletal health and disease. Nat Rev Rheumatol 11, 552–560 (2015). https://doi.org/10.1038/nrrheum.2015.84

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.84

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing