Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T cells out of control—impaired immune regulation in the inflamed joint

Abstract

Since the discovery of FOXP3+ regulatory T (TREG) cells over 15 years ago, intensive research has focused on their presence, phenotype and function in autoimmune disease. Whether deficiencies in TREG cells underlie autoimmune pathology and whether, or how, therapeutic approaches based on these cells might be successful is still the subject of debate. The potential role of TREG-cell extrinsic factors, such as proinflammatory cytokines and resistance of effector T cells to suppression, as the cause of regulatory defects in chronic autoimmune inflammation is an intensive area of research. It is now clear that, at the site of inflammation, antigen presenting cells (APCs) and proinflammatory cytokines drive effector T cell skewing and plasticity, and that these T cells can become unresponsive to regulation. In addition, expansion and function of TREG cells is affected by the inflammatory environment; indeed, new data suggest that, in certain conditions, TREG cells promote inflammation. This Review summarizes the latest findings on changes in effector T cell homeostasis in autoimmune disease and focuses on how mechanisms that normally regulate these cells are affected in the inflamed joints of patients with arthritis. These findings have important clinical implications and will affect the development of new therapeutic strategies for autoimmune arthritis.

Key Points

  • The study of immune regulation at the site of inflammation is required to improve our understanding of autoimmune pathology

  • At the site of autoimmune inflammation, proinflammatory mediators interfere with T-cell regulation and may induce T-cell plasticity

  • Regulatory T (TREG) cells are less functional, or might even become pathogenic, in an autoimmune inflammatory environment, which should be kept in mind when developing TREG-cell-based therapies

  • Resistance of effector T cells to suppression markedly contributes to the disturbed immune balance in the inflamed joints of patients with arthritis

  • In autoimmune inflammation, a perpetuating loop exists in which antigen presenting cells (APCs) instruct T-cell differentiation and function, and effector T cells promote and shape the infiltration and differentiation of APCs

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reciprocal development of peripherally induced TREG and TH17 cells.
Figure 2: The main CD4+ T-cell subsets in synovial inflammation.
Figure 3: Perpetuating loop of uncontrolled synovial inflammation.

Similar content being viewed by others

References

  1. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  2. Sakaguchi, S. et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol. Rev. 212, 8–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Notley, C. A. & Ehrenstein, M. R. The yin and yang of regulatory T cells and inflammation in RA. Nat. Rev. Rheumatol. 6, 572–577 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Valencia, X. & Lipsky, P. E. CD4+CD25+FoxP3+ regulatory T cells in autoimmune diseases. Nat. Clin. Pract. Rheumatol. 3, 619–626 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Herrath, J. et al. The inflammatory milieu in the rheumatic joint reduces regulatory T-cell function. Eur. J. Immunol. 41, 2279–2290 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Wehrens, E. J. et al. Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation in effector cells. Blood 118, 3538–3548 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Haufe, S. et al. Impaired suppression of synovial fluid CD4+ CD25 T cells from patients with juvenile idiopathic arthritis by CD4+ CD25+ regulatory T cells. Arthritis Rheum. 63, 3153–3162 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Cosmi, L. et al. Evidence of the transient nature of the Th17 phenotype of CD4+CD161+ T cells in the synovial fluid of patients with juvenile idiopathic arthritis. Arthritis Rheum. 63, 2504–2515 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Nistala, K. et al. Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment. Proc. Natl Acad. Sci. USA 107, 14751–14756 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Toh, M. L. & Miossec, P. The role of T cells in rheumatoid arthritis: new subsets and new targets. Curr. Opin. Rheumatol. 19, 284–288 (2007).

    Article  PubMed  Google Scholar 

  12. Lundy, S. K., Sarkar, S., Tesmer, L. A. & Fox, D. A. Cells of the synovium in rheumatoid arthritis. T lymphocytes. Arthritis Res. Ther. 9, 202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Steinman, L. A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage. Nat. Med. 13, 139–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. van den Berg, W. B. & Miossec, P. IL-17 as a future therapeutic target for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 549–553 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Janson, P. C. et al. Profiling of CD4+ T cells with epigenetic immune lineage analysis. J. Immunol. 186, 92–102 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Wilson, C. B., Rowell, E. & Sekimata, M. Epigenetic control of T-helper-cell differentiation. Nat. Rev. Immunol. 9, 91–105 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Snir, O. et al. Multifunctional T cell reactivity to native and glycosylated type-II collagen in rheumatoid arthritis. Arthritis Rheum. http://dx.doi.org/10.1002/art.34439.

  18. Nistala, K. et al. Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum. 58, 875–887 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Santarlasci, V. et al. Rarity of human T helper 17 cells is due to retinoic acid orphan receptor-dependent mechanisms that limit their expansion. Immunity. 36, 201–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Cho, B. A. et al. Characterization of effector memory CD8+ T cells in the synovial fluid of rheumatoid arthritis. J. Clin. Immunol. 32, 709–720 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Hunter, P. J. et al. Biologic predictors of extension of oligoarticular juvenile idiopathic arthritis as determined from synovial fluid cellular composition and gene expression. Arthritis Rheum. 62, 896–907 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Evans, H. G. et al. In vivo activated monocytes from the site of inflammation in humans specifically promote Th17 responses. Proc. Natl Acad. Sci. USA 106, 6232–6237 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Smolewska, E. et al. Distribution and clinical significance of blood dendritic cells (BDC) in children with juvenile idiopathic arthritis. Ann. Rheum. Dis. 67, 762–768 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. van Amelsfort, J. M. et al. Proinflammatory mediator-induced reversal of CD4+, CD25+ regulatory T cell-mediated suppression in rheumatoid arthritis. Arthritis Rheum. 56, 732–742 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Cavanagh, L. L. et al. Rheumatoid arthritis synovium contains plasmacytoid dendritic cells. Arthritis Res. Ther. 7, R230–R240 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gattorno, M. et al. Distinct expression pattern of IFN-α and TNF-α in juvenile idiopathic arthritis synovial tissue. Rheumatology (Oxford) 46, 657–665 (2007).

    Article  CAS  Google Scholar 

  27. Lande, R. et al. Characterization and recruitment of plasmacytoid dendritic cells in synovial fluid and tissue of patients with chronic inflammatory arthritis. J. Immunol. 173, 2815–2824 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Thomas, R. & Quinn, C. Functional differentiation of dendritic cells in rheumatoid arthritis: role of CD86 in the synovium. J. Immunol. 156, 3074–3086 (1996).

    CAS  PubMed  Google Scholar 

  29. Poppensieker, K. et al. CC chemokine receptor 4 is required for experimental autoimmune encephalomyelitis by regulating GM-CSF and IL-23 production in dendritic cells. Proc. Natl Acad. Sci. USA 109, 3897–3902 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nguyen, K. D. et al. Serum amyloid A overrides Treg anergy via monocyte-dependent and Treg-intrinsic, SOCS3-associated pathways. Blood 117, 3793–3798 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Esensten, J. H., Wofsy, D. & Bluestone, J. A. Regulatory T cells as therapeutic targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 560–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buckner, J. H. Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases. Nat. Rev. Immunol. 10, 849–859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kleer, D. L. et al. CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J. Immunol. 172, 6435–6443 (2004).

    Article  PubMed  Google Scholar 

  34. Mottonen, M. et al. CD4+ CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin. Exp. Immunol. 140, 360–367 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ruprecht, C. R. et al. Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia. J. Exp. Med. 201, 1793–1803 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van Amelsfort, J. M., Jacobs, K. M., Bijlsma, J. W., Lafeber, F. P. & Taams, L. S. CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum. 50, 2775–2785 (2004).

    Article  PubMed  Google Scholar 

  37. Baecher-Allan, C., Viglietta, V. & Hafler, D. A. Inhibition of human CD4+CD25+high regulatory T cell function. J. Immunol. 169, 6210–6217 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Ashley, C. W. & Baecher-Allan, C. Cutting Edge: Responder T cells regulate human DR+ effector regulatory T cell activity via granzyme B. J. Immunol. 183, 4843–4847 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Parietti, V., Monneaux, F., Decossas, M. & Muller, S. Function of CD4+, CD25+ Treg cells in MRL/lpr mice is compromised by intrinsic defects in antigen-presenting cells and effector T cells. Arthritis Rheum. 58, 1751–1761 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Yan, B. et al. Dysfunctional CD4+, CD25+ regulatory T cells in untreated active systemic lupus erythematosus secondary to interferon-α-producing antigen-presenting cells. Arthritis Rheum. 58, 801–812 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, X. et al. Cutting edge: expression of TNFR2 defines a maximally suppressive subset of mouse CD4+CD25+FoxP3+ T regulatory cells: applicability to tumor-infiltrating T regulatory cells. J. Immunol. 180, 6467–6471 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, X. et al. Co-expression of TNFR2 and CD25 identifies more of the functional CD4+FOXP3+ regulatory T cells in human peripheral blood. Eur. J. Immunol. 40, 1099–1106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Valencia, X. et al. TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 108, 253–261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nagar, M. et al. TNF activates a NF-κB-regulated cellular program in human CD45RA regulatory T cells that modulates their suppressive function. J. Immunol. 184, 3570–3581 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Bayry, J., Siberil, S., Triebel, F., Tough, D. F. & Kaveri, S. V. Rescuing CD4+CD25+ regulatory T-cell functions in rheumatoid arthritis by cytokine-targeted monoclonal antibody therapy. Drug Discov. Today 12, 548–552 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med. 200, 277–285 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nadkarni, S., Mauri, C. & Ehrenstein, M. R. Anti-TNF-α therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-β. J. Exp. Med. 204, 33–39 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McGovern, J. L. et al. Th17 cells are restrained by regulatory T cells from patients responding to anti-TNF antibody therapy via inhibition of IL-6. Arthritis Rheum. http://dx.doi.org/10.1002/art.34565.

  49. Flores-Borja, F., Jury, E. C., Mauri, C. & Ehrenstein, M. R. Defects in CTLA-4 are associated with abnormal regulatory T cell function in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 105, 19396–19401 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chen, X., Baumel, M., Mannel, D. N., Howard, O. M. & Oppenheim, J. J. Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J. Immunol. 179, 154–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Grinberg-Bleyer, Y. et al. Pathogenic T cells have a paradoxical protective effect in murine autoimmune diabetes by boosting Tregs. J. Clin. Invest 120, 4558–4568 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goldstein, I. et al. α1β1 Integrin+ and regulatory Foxp3+ T cells constitute two functionally distinct human CD4+ T cell subsets oppositely modulated by TNFα blockade. J. Immunol. 178, 201–210 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Raptopoulou, A. P. et al. The programmed death 1/programmed death ligand 1 inhibitory pathway is up-regulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritis. Arthritis Rheum. 62, 1870–1880 (2010).

    CAS  PubMed  Google Scholar 

  54. Hidalgo, E. et al. The response of T cells to interleukin-6 is differentially regulated by the microenvironment of the rheumatoid synovial fluid and tissue. Arthritis Rheum. 63, 3284–3293 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Korn, T. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med. 13, 423–431 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. O'Connor, R. A., Malpass, K. H. & Anderton, S. M. The inflamed central nervous system drives the activation and rapid proliferation of Foxp3+ regulatory T cells. J. Immunol. 179, 958–966 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Xiao, H., Wang, S., Miao, R. & Kan, W. TRAIL is associated with impaired regulation of CD4+. J. Clin. Immunol. 31, 1112–1119 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Fantini, M. C. et al. Smad7 controls resistance of colitogenic T Cells to regulatory T cell-mediated suppression. Gastroenterology 136, 1305–1316 (2008).

    Google Scholar 

  60. Lawson, J. M. et al. Increased resistance to CD4+CD25hi regulatory T cell-mediated suppression in patients with type 1 diabetes. Clin. Exp. Immunol. 154, 353–359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schneider, A. et al. The effector T cells of diabetic subjects are resistant to regulation via CD4+ FOXP3+ regulatory T cells. J. Immunol. 181, 7350–7355 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Vargas-Rojas, M. I., Crispin, J. C., Richaud-Patin, Y. & cocer-Varela, J. Quantitative and qualitative normal regulatory T cells are not capable of inducing suppression in SLE patients due to T-cell resistance. Lupus 17, 289–294 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Venigalla, R. K. et al. Reduced CD4+, CD25- T cell sensitivity to the suppressive function of CD4+, CD25high, CD127low/− regulatory T cells in patients with active systemic lupus erythematosus. Arthritis Rheum. 58, 2120–2130 (2008).

    Article  PubMed  Google Scholar 

  64. Clough, L. E. et al. Release from regulatory T cell-mediated suppression during the onset of tissue-specific autoimmunity is associated with elevated IL-21. J. Immunol. 180, 5393–5401 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. D'Alise, A. M. et al. The defect in T-cell regulation in NOD mice is an effect on the T-cell effectors. Proc. Natl Acad. Sci. USA 105, 19857–19862 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Monk, C. R. et al. MRL/Mp CD4+,.CD25- T cells show reduced sensitivity by suppression CD4+, CD25+ regulatory T cells in vitro: a novel defect of T cell regulation in systemic lupus erythematosus. Arthritis Rheum. 52, 1180–1184 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. You, S. et al. Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T-cells. Diabetes 54, 1415–1422 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Annunziato, F. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 204, 1849–1861.

  69. Chauhan, S. K. et al. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression. J. Immunol. 182, 1247–1252 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Stummvoll, G. H. et al. Th1, Th2, and Th17 effector T cell-induced autoimmune gastritis differs in pathological pattern and in susceptibility to suppression by regulatory T cells. J. Immunol. 181, 1908–1916 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Koenen, H. J. et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 112, 2340–2352 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Beriou, G. et al. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113, 4240–4249 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu, L., Kitani, A., Fuss, I. & Strober, W. Cutting Edge: Regulatory T Cells induce CD4+CD25Foxp3 T Cells or are self-induced to become Th17 cells in the absence of exogenous TGF-β. J. Immunol. 178, 6725–6729 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Yang, X. O. et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity. 29, 44–56 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dominguez-Villar, M., Baecher-Allan, C. M. & Hafler, D. A. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat. Med. 17, 673–675 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McClymont, S. A. et al. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J. Immunol. 186, 3918–3926 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Allan, S. E. et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. 19, 345–354 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Wang, J., Ioan-Facsinay, A., van, d., V, Huizinga, T. W. & Toes, R. E. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol. 37, 129–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Komatsu, N. et al. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl Acad. Sci. USA 106, 1903–1908 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Miyao, T. et al. Plasticity of Foxp3+ T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity. 36, 262–275 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. d'Hennezel, E., Yurchenko, E., Sgouroudis, E., Hay, V. & Piccirillo, C. A. Single-cell analysis of the human T regulatory population uncovers functional heterogeneity and instability within FOXP3+ cells. J. Immunol. 186, 6788–6797 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Bending, D. et al. Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J. Clin. Invest 119, 565–572 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee, Y. K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity. 30, 92–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Maddur, M. S., Miossec, P., Kaveri, S. V. & Bayry, J. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am. J. Pathol. 181, 8–18 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Shahrara, S., Pickens, S. R., Dorfleutner, A. & Pope, R. M. IL-17 induces monocyte migration in rheumatoid arthritis. J. Immunol. 182, 3884–3891 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Alonso, M. N. et al. TH1, TH2, and TH17 cells instruct monocytes to differentiate into specialized dendritic cell subsets. Blood 118, 3311–3320 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Campbell, I. K. et al. Differentiation of inflammatory dendritic cells is mediated by NF-κB1-dependent GM-CSF production in CD4 T cells. J. Immunol. 186, 5468–5477 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Jagger, A. L. et al. FAS/FAS-L dependent killing of activated human monocytes and macrophages by CD4+. J. Autoimmun. 38, 29–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Perlman, H. et al. Rheumatoid arthritis synovial macrophages express the Fas-associated death domain-like interleukin-1β-converting enzyme-inhibitory protein and are refractory to Fas-mediated apoptosis. Arthritis Rheum. 44, 21–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Andre, S., Tough, D. F., Lacroix-Desmazes, S., Kaveri, S. V. & Bayry, J. Surveillance of antigen-presenting cells by CD4+ CD25+ regulatory T cells in autoimmunity: immunopathogenesis and therapeutic implications. Am. J. Pathol. 174, 1575–1587 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Manel, N., Unutmaz, D. & Littman, D. R. The differentiation of human TH-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORγT. Nat. Immunol. 9, 641–649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Volpe, E. et al. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses. Nat. Immunol. 9, 650–657 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Yang, L. et al. IL-21 and TGF-β are required for differentiation of human TH17 cells. Nature 454, 350–352 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Shevach, E. M. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30, 636–645 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Pandiyan, P. et al. CD4+CD25+Foxp3+ regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity 34, 422–434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen, Y. et al. Foxp3+ regulatory T cells promote T helper 17 cell development in vivo through regulation of interleukin-2. Immunity 34, 409–421 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Lohr, J., Knoechel, B., Wang, J. J., Villarino, A. V. & Abbas, A. K. Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease. J. Exp. Med. 203, 2785–2791 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Evans, H. G., Suddason, T., Jackson, I., Taams, L. S. & Lord, G. M. Optimal induction of T helper 17 cells in humans requires T cell receptor ligation in the context of Toll-like receptor-activated monocytes. Proc. Natl Acad. Sci. USA 104, 17034–17039 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhou, X. et al. Foxp3 instability leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tiemessen, M. M. et al. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc. Natl Acad. Sci. USA 104, 19446–19451 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chimenti, M. S., Graceffa, D. & Perricone, R. Anti-TNFα discontinuation in rheumatoid and psoriatic arthritis: is it possible after disease remission? Autoimmun. Rev. 10, 636–640 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

F. van Wijk is supported by a Veni grant from the Dutch Organization for Scientific Research (NWO). B. J. Prakken is supported by the Dutch Rheumatology Foundation.

Author information

Authors and Affiliations

Authors

Contributions

E. Wehrens and F. van Wijk contributed to all aspects of the generation of this article. B. Prakken made a substantial contribution to the discussion of the content and the reviewing and editing of the manuscript before submission.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wehrens, E., Prakken, B. & van Wijk, F. T cells out of control—impaired immune regulation in the inflamed joint. Nat Rev Rheumatol 9, 34–42 (2013). https://doi.org/10.1038/nrrheum.2012.149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing