Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNAs as biomarkers in rheumatic diseases

Abstract

MicroRNAs (miRNAs) are endogenous, noncoding, single-stranded RNAs of 19–25 nucleotides in length. They regulate gene expression and are important in a wide range of physiological and pathological processes. MiRNAs are attractive as potential biomarkers because their expression pattern is reflective of underlying pathophysiologic processes and they are specific to various disease states. Moreover, miRNAs can be detected in a variety of sources, including tissue, blood and body fluids; they are reasonably stable and appear to be resistant to differences in sample handling, which increases their appeal as practical biomarkers. The clinical utility of miRNAs as diagnostic or prognostic biomarkers has been demonstrated in various malignancies and a few nonmalignant diseases. There is accumulating evidence that miRNAs have an important role in systemic rheumatic diseases and that various diseases or different stages of the same disease are associated with distinct miRNA expression profiles. Preliminary data suggest that miRNAs are promising as candidate biomarkers of diagnosis, prognosis, disease activity and severity in autoimmune diseases. MiRNAs identified as potential biomarkers in pilot studies should be validated in larger studies designed specifically for biomarker validation.

Key Points

  • MicroRNAs (miRNAs) are small regulatory RNAs that have a central role in the regulation of gene expression

  • MiRNAs possess many features of an ideal biomarker: they reflect the physiological or pathological state of cells and tissues, are relatively stable, and can be detected by various methods

  • MiRNAs have been validated as biomarkers for diagnosis and prognosis in malignant diseases

  • Early studies have linked aberrant miRNA expression to specific rheumatic diseases but, as yet, no miRNA has been validated as a biomarker in these diseases

  • Studies designed specifically to validate miRNAs as biomarkers are needed to assess their potential in rheumatic diseases

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biogenesis of mammalian microRNAs.
Figure 2: MicroRNA biomarkers in rheumatic diseases.

Similar content being viewed by others

References

  1. Chua, J. H., Armugam, A. & Jeyaseelan, K. MicroRNAs: biogenesis, function and applications. Curr. Opin. Mol. Ther. 11, 189–199 (2009).

    CAS  PubMed  Google Scholar 

  2. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Corcoran, D. L. et al. Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS ONE 4, e5279 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gregory, R. I. et al. The microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robb, G. B. & Rana, T. M. RNA helicase A interacts with RISC in human cells and functions in RISC loading. Mol. Cell 26, 523–537 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Kong, Y. W. et al. The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene. Proc. Natl Acad. Sci. USA 105, 8866–8871 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Miranda, K. C. et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126, 1203–1217 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124–1128 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Duursma, A. M., Kedde, M., Schrier, M., le Sage, C. & Agami, R. MiR-148 targets human DNMT3b protein coding region. RNA 14, 872–877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Card, D. A. et al. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol. Cell. Biol. 28, 6426–6438 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J. A. & Kosik, K. S. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137, 647–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Ren, J., Jin, P., Wang, E., Marincola, F. M. & Stroncek, D. F. MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells. J. Transl. Med. 7, 20 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yi, R. et al. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat. Genet. 38, 356–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Kloosterman, W. P., Lagendijk, A. K., Ketting, R. F., Moulton, J. D. & Plasterk, R. H. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol. 5, e203 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Callis, T. E., Chen, J. F. & Wang, D. Z. MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol. 26, 219–225 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, J. F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Cheng, L. C., Pastrana, E., Tavazoie, M. & Doetsch, F. MiR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat. Neurosci. 12, 399–408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Visone, R. & Croce, C. M. MiRNAs and cancer. Am. J. Pathol. 174, 1131–1138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spizzo, R., Nicoloso, M. S., Croce, C. M. & Calin, G. A. SnapShot: microRNAs in cancer. Cell 137, 586–586.e1 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Niwa, R., Zhou, F., Li, C. & Slack, F. J. The expression of the Alzheimer's amyloid precursor protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans. Dev. Biol. 315, 418–425 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu, Y., Kalbfleisch, T., Brennan, M. D. & Li, Y. A microRNA gene is hosted in an intron of a schizophrenia-susceptibility gene. Schizophr. Res. 109, 86–89 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sarasin-Filipowicz, M., Krol, J., Markiewicz, I., Heim, M. H. & Filipowicz, W. Decreased levels of microRNA miR-122 in individuals with hepatitis C responding poorly to interferon therapy. Nat. Med. 15, 31–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Houzet, L. et al. MicroRNA profile changes in human immunodeficiency virus type 1 (HIV-1) seropositive individuals. Retrovirology 5, 118 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Padgett, K. A. et al. Primary biliary cirrhosis is associated with altered hepatic microRNA expression. J. Autoimmun. 32, 246–253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tang, Y. et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 60, 1065–1075 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Dai, Y. et al. Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol. Int. 29, 749–754 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Dai, Y. et al. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus 16, 939–946 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Nakamachi, Y. et al. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum. 60, 1294–1304 (2009).

    Article  PubMed  Google Scholar 

  37. Alsaleh, G. et al. Bruton's tyrosine kinase is involved in miR-346-related regulation of IL-18 release by lipopolysaccharide-activated rheumatoid fibroblast-like synoviocytes. J. Immunol. 182, 5088–5097 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Pauley, K. M. et al. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res. Ther. 10, R101 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakasa, T. et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 58, 1284–1292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, C. Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Baltimore, D., Boldin, M. P., O'Connell, R. M., Rao, D. S. & Taganov, K. D. MicroRNAs: new regulators of immune cell development and function. Nat. Immunol. 9, 839–845 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Lodish, H. F., Zhou, B., Liu, G. & Chen, C. Z. Micromanagement of the immune system by microRNAs. Nat. Rev. Immunol. 8, 120–130 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Pauley, K. M. & Chan, E. K. MicroRNAs and their emerging roles in immunology. Ann. NY Acad. Sci. 1143, 226–239 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Tili, E., Michaille, J. J., Costinean, S. & Croce, C. M. MicroRNAs, the immune system and rheumatic disease. Nat. Clin. Pract. Rheumatol. 4, 534–541 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Kitani, A. & Xu, L. Regulatory T cells and the induction of IL-17. Mucosal Immunol. 1 (Suppl. 1), S43–S46 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Du, C. et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat. Immunol. 10, 1252–1259 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Liston, A., Lu, L. F., O'Carroll, D., Tarakhovsky, A. & Rudensky, A. Y. Dicer-dependent microRNA pathway safeguards regulatory T cell function. J. Exp. Med. 205, 1993–2004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, L. F. et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30, 80–91 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ceppi, M. et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc. Natl Acad. Sci. USA 106, 2735–2740 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. de Yébenes, V. G. et al. MiR-181b negatively regulates activation-induced cytidine deaminase in B cells. J. Exp. Med. 205, 2199–2206 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dorsett, Y. et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 28, 630–638 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Basso, K. et al. Identification of the human mature B cell miRNome. Immunity 30, 744–752 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, J. et al. Patterns of microRNA expression characterize stages of human B-cell differentiation. Blood 113, 4586–4594 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Glinsky, G. V. An SNP-guided microRNA map of fifteen common human disorders identifies a consensus disease phenocode aiming at principal components of the nuclear import pathway. Cell Cycle 7, 2570–2583 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Wu, H., Ye, C., Ramirez, D. & Manjunath, N. Alternative processing of primary microRNA transcripts by Drosha generates 5' end variation of mature microRNA. PLoS ONE 4, e7566 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mishra, P. J. & Bertino, J. R. MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics 10, 399–416 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Morin, R. D. et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 18, 610–621 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jazdzewski, K. & de la Chapelle, A. Genomic sequence matters: a SNP in microRNA-146a can turn anti-apoptotic. Cell Cycle 8, 1642–1643 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Jazdzewski, K. et al. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA 105, 7269–7274 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Xu, T. et al. A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis 29, 2126–2131 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Illei, G. G., Tackey, E., Lapteva, L. & Lipsky, P. E. Biomarkers in systemic lupus erythematosus. I. General overview of biomarkers and their applicability. Arthritis Rheum. 50, 1709–1720 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Thomas, G. P. & Brown, M. A. Genetics and genomics of ankylosing spondylitis. Immunol. Rev. 233, 162–180 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. de Vries, R. R., Huizinga, T. W. & Toes, R. E. Redefining the HLA and RA association: to be or not to be anti-CCP positive. J. Autoimmun. 25 (Suppl.), 21–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Gregersen, P. K. & Olsson, L. M. Recent advances in the genetics of autoimmune disease. Annu. Rev. Immunol. 27, 363–391 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mackay, I. R. Clustering and commonalities among autoimmune diseases. J. Autoimmun. 33, 170–177 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Scofield, R. H. Genetics of systemic lupus erythematosus and Sjögren's syndrome. Curr. Opin. Rheumatol. 21, 448–453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nishimura, K. et al. Meta-analysis: diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann. Intern. Med. 146, 797–808 (2007).

    Article  PubMed  Google Scholar 

  68. Schulte-Pelkum, J., Fritzler, M. & Mahler, M. Latest update on the Ro/SS-A autoantibody system. Autoimmun. Rev. 8, 632–637 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Kaltenhäuser, S. et al. Antibodies against cyclic citrullinated peptide are associated with the DRB1 shared epitope and predict joint erosion in rheumatoid arthritis. Rheumatology (Oxford) 46, 100–104 (2007).

    Article  Google Scholar 

  70. Sanmartí, R. et al. Prognostic factors of radiographic progression in early rheumatoid arthritis: a two year prospective study after a structured therapeutic strategy using DMARDs and very low doses of glucocorticoids. Clin. Rheumatol. 26, 1111–1118 (2007).

    Article  PubMed  Google Scholar 

  71. Gunawardena, H., Betteridge, Z. E. & McHugh, N. J. Myositis-specific autoantibodies: their clinical and pathogenic significance in disease expression. Rheumatology (Oxford) 48, 607–612 (2009).

    Article  CAS  Google Scholar 

  72. Balow, J. E. Clinical presentation and monitoring of lupus nephritis. Lupus 14, 25–30 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Cissell, K. A. & Deo, S. K. Trends in microRNA detection. Anal. Bioanal. Chem. 394, 1109–1116 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327, 198–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Doleshal, M. et al. Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 10, 203–211 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, X. et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18, 997–1006 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Michael, A. et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 16, 34–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Hanke, M. et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol. Oncol. doi: 10.1016/j.urolonc.2009.01.027.

  80. Park, N. J. et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin. Cancer Res. 15, 5473–5477 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lebanony, D. et al. Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J. Clin. Oncol. 27, 2030–2037 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Gilad, S. et al. Serum microRNAs are promising novel biomarkers. PLoS ONE 3, e3148 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zoon, C. K. et al. Current molecular diagnostics of breast cancer and the potential incorporation of microRNA. Expert Rev. Mol. Diagn. 9, 455–467 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, X. et al. An array-based analysis of microRNA expression comparing matched frozen and formalin-fixed paraffin-embedded human tissue samples. J. Mol. Diagn. 10, 513–519 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Stanczyk, J. et al. Altered expression of microRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 58, 1001–1009 (2008).

    Article  PubMed  Google Scholar 

  87. Yamasaki, K. et al. Expression of microRNA-146a in osteoarthritis cartilage. Arthritis Rheum. 60, 1035–1041 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alevizos, I., Bajracharya, S. D., Alexander, S., Turner, R. J. & Illei, G. G. MicroRNA profiling of minor salivary glands identifies disease and inflammation biomarkers in Sjögren's syndrome patients [abstract 1961]. Arthritis Rheum. 60 (Suppl.), S733–S734 (2009).

    Google Scholar 

  89. Iorio, M. V., Casalini, P., Tagliabue, E., Ménard, S. & Croce, C. M. MicroRNA profiling as a tool to understand prognosis, therapy response and resistance in breast cancer. Eur. J. Cancer 44, 2753–2759 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Volinia, S. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA 103, 2257–2261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, Q. Z., Xu, W., Habib, N. & Xu, R. Potential uses of microRNA in lung cancer diagnosis, prognosis, and therapy. Curr. Cancer Drug Targets 9, 572–594 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Yanaihara, N. et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9, 189–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Huang, Y. S. et al. Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis. J. Gastroenterol. Hepatol. 23, 87–94 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Szafranska, A. E. et al. Accurate molecular characterization of formalin-fixed, paraffin-embedded tissues by microRNA expression profiling. J. Mol. Diagn. 10, 415–423 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bloomston, M. et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297, 1901–1908 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Dillhoff, M., Liu, J., Frankel, W., Croce, C. & Bloomston, M. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J. Gastrointest. Surg. 12, 2171–2176 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Schetter, A. J. et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299, 425–436 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Calin, G. A. et al. Frequent deletions and downregulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524–15529 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Garzon, R. et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc. Natl Acad. Sci. USA 105, 3945–3950 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Jongen-Lavrencic, M., Sun, S. M., Dijkstra, M. K., Valk, P. J. & Löwenberg, B. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 111, 5078–5085 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Marcucci, G. et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 358, 1919–1928 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Calin, G. A. et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med. 353, 1793–1801 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Prometheus launches ProOncDx cancer diagnostics. Prometheus® Therapeutics & Diagnostics [online], (2009).

  105. Taylor, D. D. & Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 110, 13–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Lodes, M. J. et al. Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS ONE 4, e6229 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rabinowits, G., Gercel-Taylor, C., Day, J. M., Taylor, D. D. & Kloecker, G. H. Exosomal microRNA: a diagnostic marker for lung cancer. Clin. Lung Cancer 10, 42–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Rosell, R., Wei, J. & Taron, M. Circulating microRNA signatures of tumor-derived exosomes for early diagnosis of non-small-cell lung cancer. Clin. Lung Cancer 10, 8–9 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Anglicheau, D. et al. MicroRNA expression profiles predictive of human renal allograft status. Proc. Natl Acad. Sci. USA 106, 5330–5335 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hasemeier, B., Christgen, M., Kreipe, H. & Lehmann, U. Reliable microRNA profiling in routinely processed formalin-fixed paraffin-embedded breast cancer specimens using fluorescence labeled bead technology. BMC Biotechnol. 8, 90 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Babak, T., Zhang, W., Morris, Q., Blencowe, B. J. & Hughes, T. R. Probing microRNAs with microarrays: tissue specificity and functional inference. RNA 10, 1813–1819 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor G. Illei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alevizos, I., Illei, G. MicroRNAs as biomarkers in rheumatic diseases. Nat Rev Rheumatol 6, 391–398 (2010). https://doi.org/10.1038/nrrheum.2010.81

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.81

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research