Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endothelial progenitor cell dysfunction in rheumatic disease

Abstract

Rheumatic disease is characterized by inflammation and endothelial dysfunction, which contribute to accelerated atherosclerosis. Circulating endothelial progenitor cells (EPCs) can restore dysfunctional endothelium and thereby protect against atherosclerotic vascular disease. The number and function of EPCs are, however, affected in rheumatic diseases such as psoriatic arthritis, rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, and antineutrophil cytoplasmic autoantibody-associated vasculitis. Rheumatic disease is often characterized by decreased numbers, and impaired function, of EPCs, although numbers of these cells might increase during the initial years of systemic sclerosis. Pioneering studies show that EPC dysfunction might be improved with pharmacological treatment. How best to restore EPC function, and whether achieving this aim can prevent long-term cardiovascular complications in rheumatic disease, remain to be established.

Key Points

  • Endothelial progenitor cells (EPCs) can be characterized as monocytic or hemangioblastic, and have diverse origins and functions

  • EPC dysfunction accelerates atherosclerotic cardiovascular disease

  • Rheumatoid arthritis, systemic lupus erythematosus, psoriatic arthritis and antineutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis are often associated with reduced levels of EPCs and impaired EPC function

  • In systemic sclerosis, levels of EPCs are increased early in the disease, followed by a progressive decline

  • Multiple mechanisms are involved in EPC dysfunction in rheumatic disease

  • EPC levels can be therapeutically increased using immunosuppressants and, potentially, statins

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of EPC characterization.
Figure 2: Potential mechanisms involved in reduced EPC levels in rheumatic disease.

Similar content being viewed by others

References

  1. Shoenfeld, Y. et al. Accelerated atherosclerosis in autoimmune rheumatic diseases. Circulation 112, 3337–3347 (2005).

    Article  PubMed  Google Scholar 

  2. Giles, J. T., Post, W., Blumenthal, R. S. & Bathon, J. M. Therapy Insight: managing cardiovascular risk in patients with rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 2, 320–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Kimhi, O. et al. Prevalence and risk factors of atherosclerosis in patients with psoriatic arthritis. Semin. Arthritis Rheum. 36, 203–209 (2007).

    Article  PubMed  Google Scholar 

  4. Pagnoux, C., Chironi, G., Simon, A. & Guillevin, L. Atherosclerosis in ANCA-associated vasculitides. Ann. NY Acad. Sci. 1107, 11–21 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Westerweel, P. E., Luyten, R. K., Koomans, H. A., Derksen, R. H. & Verhaar, M. C. Premature atherosclerotic cardiovascular disease in systemic lupus erythematosus. Arthritis Rheum. 56, 1384–1396 (2007).

    Article  PubMed  Google Scholar 

  6. Eder, L. et al. Subclinical atherosclerosis in psoriatic arthritis: a case–control study. J. Rheumatol. 35, 877–882 (2008).

    PubMed  Google Scholar 

  7. Braam, B. & Verhaar, M. C. Understanding eNOS for pharmacological modulation of endothelial function: a translational view. Curr. Pharm. Des. 13, 1727–1740 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Hahn, B. H., Grossman, J., Chen, W. & McMahon, M. The pathogenesis of atherosclerosis in autoimmune rheumatic diseases: roles of inflammation and dyslipidemia. J. Autoimmun. 28, 69–75 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Urbich, C. & Dimmeler, S. Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res. 95, 343–353 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt-Lucke, C. et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 111, 2981–2987 (2005).

    Article  PubMed  Google Scholar 

  11. Werner, N. et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N. Engl. J. Med. 353, 999–1007 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Ruger, B. et al. Endothelial precursor cells in the synovial tissue of patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum. 50, 2157–2166 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Silverman, M. D., Haas, C. S., Rad, A. M., Arbab, A. S. & Koch, A. E. The role of vascular cell adhesion molecule 1/very late activation antigen 4 in endothelial progenitor cell recruitment to rheumatoid arthritis synovium. Arthritis Rheum. 56, 1817–1826 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Filer, A. D. et al. Diffuse endothelial dysfunction is common to ANCA associated systemic vasculitis and polyarteritis nodosa. Ann. Rheum. Dis. 62, 162–167 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han, C. et al. Cardiovascular disease and risk factors in patients with rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. J. Rheumatol. 33, 2167–2172 (2006).

    PubMed  Google Scholar 

  16. Gonzalez-Juanatey, C. et al. Endothelial dysfunction in psoriatic arthritis patients without clinically evident cardiovascular disease or classic atherosclerosis risk factors. Arthritis Rheum. 57, 287–293 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Belch, J. J., McSwiggan, S. & Lau, C. Macrovascular disease in systemic sclerosis: the tip of an iceberg? Rheumatology (Oxford) 47 (Suppl. 5) v16–v17 (2008).

    Article  Google Scholar 

  18. Gladman, D. D. et al. Cardiovascular morbidity in psoriatic arthritis (PsA). Ann. Rheum. Dis. doi:10.1136/ard.2008.094839 (2008).

  19. Rehman, J., Li, J., Orschell, C. M. & March, K. L. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107, 1164–1169 (2003).

    Article  PubMed  Google Scholar 

  20. Urbich, C. et al. Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation 108, 2511–2516 (2003).

    Article  PubMed  Google Scholar 

  21. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Rabelink, T. J., De Boer, H. C., De Koning, E. J. & Van Zonneveld, A. J. Endothelial progenitor cells: more than an inflammatory response? Arterioscler. Thromb. Vasc. Biol. 24, 834–838 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Urbich, C. & Dimmeler, S. Endothelial progenitor cells functional characterization. Trends Cardiovasc. Med. 14, 318–322 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Urbich, C. et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J. Mol. Cell. Cardiol. 39, 733–742 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Distler, J. H. et al. EUSTAR statement and recommendations on endothelial precursor cells. Ann. Rheum. Dis. 68, 163–168 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Peichev, M. et al. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95, 952–958 (2000).

    CAS  PubMed  Google Scholar 

  27. Shmelkov, S. V. et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133 metastatic colon cancer cells initiate tumors. J. Clin. Invest. 118, 2111–2120 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fadini, G. P. et al. Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis 197, 496–503 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Westerweel, P. E., Derksen, R. H. & Verhaar, M. C. Comment on: Systemic lupus erythematosus patients exhibit functional deficiencies of endothelial progenitor cells. Rheumatology (Oxford) 48, 453 (2009).

    Article  Google Scholar 

  30. Shintani, S. et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103, 2776–2779 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Eizawa, T. et al. Decrease in circulating endothelial progenitor cells in patients with stable coronary artery disease. Heart 90, 685–686 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Westerweel, P. E. et al. Endothelial progenitor cell levels in obese men with the metabolic syndrome and the effect of simvastatin monotherapy vs. simvastatin/ezetimibe combination therapy. Eur. Heart J. 29, 2808–2817 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Hill, J. M. et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med. 348, 593–600 (2003).

    Article  PubMed  Google Scholar 

  34. Loomans, C. J. et al. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 53, 195–199 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Delva, P. et al. Endothelial progenitor cells in patients with essential hypertension. J. Hypertens. 25, 127–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Westerweel, P. E. et al. End-stage renal disease causes an imbalance between endothelial and smooth muscle progenitor cells. Am. J. Physiol. Renal Physiol. 292, F1132–F1140 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Herbrig, K., Pistrosch, F., Foerster, S. & Gross, P. Endothelial progenitor cells in chronic renal insufficiency. Kidney Blood Press. Res. 29, 24–31 (2006).

    Article  PubMed  Google Scholar 

  38. Vasa, M. et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res. 89, E1–E7 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Heeschen, C. et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109, 1615–1622 (2004).

    Article  PubMed  Google Scholar 

  40. Koch, A. E. & Distler, O. Vasculopathy and disordered angiogenesis in selected rheumatic diseases: rheumatoid arthritis and systemic sclerosis. Arthritis Res. Ther. 9 (Suppl. 2), S3 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ablin, J. N. et al. Normal levels and function of endothelial progenitor cells in patients with psoriatic arthritis. Rheumatol. Int. 29, 257–262 (2009).

    Article  PubMed  Google Scholar 

  42. Egan, C. G., Caporali, F., Garcia-Gonzalez, E., Galeazzi, M. & Sorrentino, V. Endothelial progenitor cells and colony-forming units in rheumatoid arthritis: association with clinical characteristics. Rheumatology (Oxford) 47, 1484–1488 (2008).

    Article  CAS  Google Scholar 

  43. Grisar, J. et al. Depletion of endothelial progenitor cells in the peripheral blood of patients with rheumatoid arthritis. Circulation 111, 204–211 (2005).

    Article  PubMed  Google Scholar 

  44. Grisar, J. et al. Endothelial progenitor cells in active rheumatoid arthritis: effects of tumour necrosis factor and glucocorticoid therapy. Ann. Rheum. Dis. 66, 1284–1288 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Herbrig, K. et al. Endothelial dysfunction in patients with rheumatoid arthritis is associated with a reduced number and impaired function of endothelial progenitor cells. Ann. Rheum. Dis. 65, 157–163 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Kuwana, M., Okazaki, Y., Yasuoka, H., Kawakami, Y. & Ikeda, Y. Defective vasculogenesis in systemic sclerosis. Lancet 364, 603–610 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Westerweel, P. E. et al. Haematopoietic and endothelial progenitor cells are deficient in quiescent systemic lupus erythematosus. Ann. Rheum. Dis. 66, 865–870 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Papadaki, H. A. et al. Increased apoptosis of bone marrow CD34+ cells and impaired function of bone marrow stromal cells in patients with systemic lupus erythematosus. Br. J. Haematol. 115, 167–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Liu, H. et al. Suppression of haematopoiesis by IgG autoantibodies from patients with systemic lupus erythematosus (SLE). Clin. Exp. Immunol. 100, 480–485 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tiefenthaler, M. et al. Apoptosis of CD34+ cells after incubation with sera of leukopenic patients with systemic lupus erythematosus. Lupus 12, 471–478 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Denny, M. F. et al. Interferon-alpha promotes abnormal vasculogenesis in lupus: a potential pathway for premature atherosclerosis. Blood 110, 2907–2915 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moonen, J. R. et al. Reduced number and impaired function of circulating progenitor cells in patients with systemic lupus erythematosus. Arthritis Res. Ther. 9, R84 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, P. Y. et al. Type I interferon as a novel risk factor for endothelial progenitor cell depletion and endothelial dysfunction in systemic lupus erythematosus. Arthritis Rheum. 56, 3759–3769 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Grisar, J. et al. Systemic lupus erythematosus patients exhibit functional deficiencies of endothelial progenitor cells. Rheumatology (Oxford) 47, 1476–1483 (2008).

    Article  CAS  Google Scholar 

  55. Grisar, J. & Smolen, J. S. Comment on: Systemic lupus erythematosus patients exhibit functional deficiencies of endothelial progenitor cells: reply. Rheumatology (Oxford) 48, 453–454 (2009).

    Article  Google Scholar 

  56. Gomer, R. H. Circulating progenitor cells and scleroderma. Curr. Rheumatol. Rep. 10, 183–188 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Avouac, J. et al. Circulating endothelial progenitor cells in systemic sclerosis: association with disease severity. Ann. Rheum. Dis. 67, 1455–1460 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Del Papa, N. et al. Circulating endothelial cells as a marker of ongoing vascular disease in systemic sclerosis. Arthritis Rheum. 50, 1296–1304 (2004).

    Article  PubMed  Google Scholar 

  59. Del Papa, N. et al. Bone marrow endothelial progenitors are defective in systemic sclerosis. Arthritis Rheum. 54, 2605–2615 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Nevskaya, T. et al. Circulating endothelial progenitor cells in systemic sclerosis: relation to impaired angiogenesis and cardiovascular manifestations. Clin. Exp. Rheumatol. 26, 421–429 (2008).

    CAS  PubMed  Google Scholar 

  61. Zhu, S. et al. Transcriptional regulation of Bim by FOXO3a and Akt mediates scleroderma serum-induced apoptosis in endothelial progenitor cells. Circulation 118, 2156–2165 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Holmen, C. et al. Circulating inflammatory endothelial cells contribute to endothelial progenitor cell dysfunction in patients with vasculitis and kidney involvement. J. Am. Soc. Nephrol. 16, 3110–3120 (2005).

    Article  PubMed  Google Scholar 

  63. de Groot, K. et al. Vascular endothelial damage and repair in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 56, 3847–3853 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Mayr, F. B. et al. Effects of low dose endotoxemia on endothelial progenitor cells in humans. Atherosclerosis 195, e202–e206 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Masuda, J. et al. Depletion of endothelial progenitor cells in the peripheral blood of patients with ulcerative colitis. Int. J. Mol. Med. 19, 221–228 (2007).

    PubMed  Google Scholar 

  66. Kopp, H. G., Avecilla, S. T., Hooper, A. T. & Rafii, S. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda) 20, 349–356 (2005).

    CAS  Google Scholar 

  67. Yin, T. & Li, L. The stem cell niches in bone. J. Clin. Invest. 116, 1195–1201 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kissel, C. K. et al. Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. J. Am. Coll. Cardiol. 49, 2341–2349 (2007).

    Article  PubMed  Google Scholar 

  69. Papadaki, H. A. et al. Bone marrow progenitor cell reserve and function and stromal cell function are defective in rheumatoid arthritis: evidence for a tumor necrosis factor alpha-mediated effect. Blood 99, 1610–1619 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Aicher, A. et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat. Med. 9, 1370–1376 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Ozuyaman, B. et al. Nitric oxide differentially regulates proliferation and mobilization of endothelial progenitor cells but not of hematopoietic stem cells. Thromb. Haemost. 94, 770–772 (2005).

    PubMed  Google Scholar 

  72. Verhaar, M. C. & Rabelink, T. J. Endothelial function: strategies for early intervention. Cardiovasc. Drugs Ther. 12 (Suppl. 1), 125–134 (1998).

    Article  PubMed  Google Scholar 

  73. Avouac, J. et al. Angiogenesis in systemic sclerosis: Impaired expression of vascular endothelial growth factor receptor 1 in endothelial progenitor-derived cells under hypoxic conditions. Arthritis Rheum. 58, 3550–3561 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Rahimi, N. VEGFR-1 and VEGFR-2: two non-identical twins with a unique physiognomy. Front. Biosci. 11, 818–829 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Verma, S. et al. C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease. Circulation 109, 2058–2067 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Imanishi, T., Hano, T., Sawamura, T. & Nishio, I. Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction. Clin. Exp. Pharmacol. Physiol. 31, 407–413 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, X., Chen, J., Tao, Q., Zhu, J. & Shang, Y. Effects of ox-LDL on number and activity of circulating endothelial progenitor cells. Drug Chem. Toxicol. 27, 243–255 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Frostegard, J. et al. Lipid peroxidation is enhanced in patients with systemic lupus erythematosus and is associated with arterial and renal disease manifestations. Arthritis Rheum. 52, 192–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Zhu, J. H. et al. Homocysteine accelerates senescence and reduces proliferation of endothelial progenitor cells. J. Mol. Cell. Cardiol. 40, 648–652 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, J. Z. et al. Effects of homocysteine on number and activity of endothelial progenitor cells from peripheral blood. J. Mol. Cell. Cardiol. 36, 233–239 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Lazzerini, P. E. et al. Hyperhomocysteinemia, inflammation and autoimmunity. Autoimmun. Rev. 6, 503–509 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Ablin, J. N. et al. Effect of anti-TNFα treatment on circulating endothelial progenitor cells (EPCs) in rheumatoid arthritis. Life Sci. 79, 2364–2369 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Ronnblom, L., Eloranta, M. L. & Alm, G. V. The type I interferon system in systemic lupus erythematosus. Arthritis Rheum. 54, 408–420 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Vemulapalli, S. et al. Cell therapy in murine atherosclerosis: in vivo imaging with high-resolution helical SPECT. Radiology 242, 198–207 (2007).

    Article  PubMed  Google Scholar 

  85. Kurosaka, D. et al. Kinetics of circulating endothelial progenitor cells in mice with type II collagen arthritis. Blood Cells Mol. Dis. 35, 236–240 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Werner, C., Kamani, C. H., Gensch, C., Bohm, M. & Laufs, U. The peroxisome proliferator-activated receptor-γ agonist pioglitazone increases number and function of endothelial progenitor cells in patients with coronary artery disease and normal glucose tolerance. Diabetes 56, 2609–2615 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Bahlmann, F. H. et al. Stimulation of endothelial progenitor cells: a new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension 45, 526–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Laufs, U. et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109, 220–226 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Del Papa, N. et al. Simvastatin reduces endothelial activation and damage but is partially ineffective in inducing endothelial repair in systemic sclerosis. J. Rheumatol. 35, 1323–1328 (2008).

    CAS  PubMed  Google Scholar 

  90. Choi, J., Kim, J. Y., Kwok, S. K. & Cho, C. S. Endothelial progenitor cell proliferation and differentiation is increased by hydroxychloroquine (conference abstract). Ann. Rheum. Dis. 67, 165 (2008).

    Google Scholar 

  91. Nevskaya, T. et al. Autologous progenitor cell implantation as a novel therapeutic intervention for ischaemic digits in systemic sclerosis. Rheumatology (Oxford) 48, 61–64 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Westerweel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Peripheral blood EPC levels in rheumatic diseases compared to healthy controls. (DOC 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westerweel, P., Verhaar, M. Endothelial progenitor cell dysfunction in rheumatic disease. Nat Rev Rheumatol 5, 332–340 (2009). https://doi.org/10.1038/nrrheum.2009.81

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.81

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing