Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sensors of the innate immune system: their mode of action

Abstract

The discovery of molecular sensors that enable eukaryotes to recognize microbial pathogens and their products has been a key advance in our understanding of innate immunity. A tripartite sensing apparatus has developed to detect danger signals from infectious agents and damaged tissues, resulting in an immediate but short-lived defense response. This apparatus includes Toll-like receptors, retinoid acid-inducible gene-I-like receptors and other cytosolic nucleic acid sensors, and nucleotide-binding and oligomerization domain-like receptors; adaptors, kinases and other signaling molecules are required to elicit effective responses. Although this sensing is beneficial to the host, excessive activation and/or engagement by self molecules might induce autoimmune and other inflammatory disorders.

Key Points

  • Eukaryotes have evolved a cellular innate immune system, comprising three sets of cellular sensors, to detect and eradicate microbes; this system is nonspecific and rapid in its response

  • Toll-like receptors are present on cell surfaces and endosomal compartments, whereas retinoid acid-inducible gene-I-like receptors and nucleotide-binding and oligomerization domain-like receptors are present in the cytosol; although they evolved to discriminate foreign from self, these sensors can also recognize products derived from stressed or damaged cells

  • Engagement of the innate sensors initiates signaling pathways that result in the production of proinflammatory cytokines and other molecules that promote elimination of the offending agent; however, autoimmune or autoinflammatory diseases might develop if these pathways are overstimulated or uncontrolled

  • Understanding the innate immune sensors, their specificity and their signaling pathways provides the basis for new emerging concepts regarding the pathogenesis and treatment of a wide spectrum of rheumatic diseases

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TLR-mediated signaling.
Figure 2: RLR-mediated signaling.
Figure 3: Signaling by NOD1 and NOD2.
Figure 4: Inflammasome activation.

Similar content being viewed by others

References

  1. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Janeway, C. A., Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54 Pt 1, 1–13 (1989).

    Article  PubMed  Google Scholar 

  3. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Miyake, K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin. Immunol. 19, 3–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Nomura, N. et al. Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1. DNA Res. 1, 27–35 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Taguchi, T., Mitcham, J. L., Dower, S. K., Sims, J. E. & Testa, J. R. Chromosomal localization of TIL, a gene encoding a protein related to the Drosophila transmembrane receptor Toll, to human chromosome 4p14. Genomics 32, 486–488 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Uematsu, S. & Akira, S. Toll-like receptors and innate immunity. J. Mol. Med. 84, 712–725 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Beutler, B. et al. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu. Rev. Immunol. 24, 353–389 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Vogl, T. et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 13, 1042–1049 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Rallabhandi, P. et al. Analysis of proteinase-activated receptor 2 and TLR4 signal transduction: a novel paradigm for receptor cooperativity. J. Biol. Chem. 283, 24314–24325 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Figueiredo, R. T. et al. Characterization of heme as activator of Toll-like receptor 4. J. Biol. Chem. 282, 20221–20229 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Huyton, T., Rossjohn, J. & Wilce, M. Toll-like receptors: structural pieces of a curve-shaped puzzle. Immunol. Cell. Biol. 85, 406–410 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Jin, M. S. & Lee, J. O. Structures of the toll-like receptor family and its ligand complexes. Immunity 29, 182–191 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Park, B. S. et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458, 1191–1195 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Kawai, T. & Akira, S. TLR signaling. Semin. Immunol. 19, 24–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Kenny, E. F. & O'Neill, L. A. Signalling adaptors used by Toll-like receptors: an update. Cytokine 43, 342–349 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Ermolaeva, M. A. et al. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat. Immunol. 9, 1037–1046 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Pobezinskaya, Y. L. et al. The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. Nat. Immunol. 9, 1047–1054 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kagan, J. C. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nat. Immunol. 9, 361–368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Watters, T. M., Kenny, E. F. & O'Neill, L. A. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol. Cell Biol. 85, 411–419 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Lang, T. & Mansell, A. The negative regulation of Toll-like receptor and associated pathways. Immunol. Cell Biol. 85, 425–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Lemke, G. & Rothlin, C. V. Immunobiology of the TAM receptors. Nat. Rev. Immunol. 8, 327–336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ananieva, O. et al. The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling. Nat. Immunol. 9, 1028–1036 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Stack, J. et al. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J. Exp. Med. 201, 1007–1018 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cirl, C. et al. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat. Med. 14, 399–406 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, Y. et al. Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 26, 215–226 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wakabayashi, Y. et al. A protein associated with toll-like receptor 4 (PRAT4A) regulates cell surface expression of TLR4. J. Immunol. 177, 1772–1779 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Kim, Y. M., Brinkmann, M. M., Paquet, M. E. & Ploegh, H. L. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 452, 234–238 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Ewald, S. E. et al. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456, 658–662 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park, B. et al. Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat. Immunol. 9, 1407–1414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matsumoto, F. et al. Cathepsins are required for Toll-like receptor 9 responses. Biochem. Biophys. Res. Commun. 367, 693–699 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Asagiri, M. et al. Cathepsin K-dependent toll-like receptor 9 signaling revealed in experimental arthritis. Science 319, 624–627 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Lee, H. K., Lund, J. M., Ramanathan, B., Mizushima, N. & Iwasaki, A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398–1401 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Reis e Sousa, C. Immunology. Eating in to avoid infection. Science 315, 1376–1377 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Sanjuan, M. A., Milasta, S. & Green, D. R. Toll-like receptor signaling in the lysosomal pathways. Immunol. Rev. 227, 203–220 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Takeuchi, O. & Akira, S. MDA5/RIG-I and virus recognition. Curr. Opin. Immunol. 20, 17–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Moore, C. B. & Ting, J. P. Regulation of mitochondrial antiviral signaling pathways. Immunity 28, 735–739 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Yoneyama, M. & Fujita, T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol. Rev. 227, 54–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Schlee, M. et al. Approaching the RNA ligand for RIG-I? Immunol. Rev. 227, 66–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Michallet, M. C. et al. TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28, 651–661 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Soulat, D. et al. The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J. 27, 2135–2146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saito, T. et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc. Natl Acad. Sci. USA 104, 582–587 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Venkataraman, T. et al. Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J. Immunol. 178, 6444–6455 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Moore, C. B. et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451, 573–577 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Gack, M. U. et al. Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proc. Natl Acad. Sci. USA 105, 16743–16748 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oshiumi, H., Matsumoto, M., Hatakeyama, S. & Seya, T. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-β induction during the early phase of viral infection. J. Biol. Chem. 284, 807–817 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Stetson, D. B. & Medzhitov, R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24, 93–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Ishii, K. J. et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 7, 40–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Kaiser, W. J., Upton, J. W. & Mocarski, E. S. Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA-dependent activator of IFN regulatory factors. J. Immunol. 181, 6427–6434 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Ishii, K. J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451, 725–729 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Muruve, D. A. et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452, 103–107 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Burckstummer, T. et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10, 266–272 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Fernandes-Alnemri, T., Yu, J. W., Datta, P., Wu, J. & Alnemri, E. S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Roberts, T. L. et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323, 1057–1060 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Ting, J. P., Kastner, D. L. & Hoffman, H. M. CATERPILLERs, pyrin and hereditary immunological disorders. Nat. Rev. Immunol. 6, 183–195 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Kanneganti, T. D., Lamkanfi, M. & Nunez, G. Intracellular NOD-like receptors in host defense and disease. Immunity 27, 549–559 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. McDermott, M. F. & Tschopp, J. From inflammasomes to fevers, crystals and hypertension: how basic research explains inflammatory diseases. Trends Mol. Med. 13, 381–388 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Kaparakis, M., Philpott, D. J. & Ferrero, R. L. Mammalian NLR proteins; discriminating foe from friend. Immunol. Cell Biol. 85, 495–502 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Fritz, J. H., Ferrero, R. L., Philpott, D. J. & Girardin, S. E. Nod-like proteins in immunity, inflammation and disease. Nat. Immunol. 7, 1250–1257 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Becker, C. E. & O'Neill, L. A. Inflammasomes in inflammatory disorders: the role of TLRs and their interactions with NLRs. Semin. Immunopathol. 29, 239–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Di Virgilio, F. Liaisons dangereuses: P2X7 and the inflammasome. Trends Pharmacol. Sci. 28, 465–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Hsu, Y. M. et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat. Immunol. 8, 198–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Fritz, J. H. et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26, 445–459 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Magalhaes, J. G. et al. Nod2-dependent Th2 polarization of antigen-specific immunity. J. Immunol. 181, 7925–7935 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. da Silva Correia, J., Miranda, Y., Leonard, N. & Ulevitch, R. SGT1 is essential for Nod1 activation. Proc. Natl Acad. Sci. USA 104, 6764–6769 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Stehlik, C., Hayashi, H., Pio, F., Godzik, A. & Reed, J. C. CARD6 is a modulator of NF-kappa B activation by Nod1- and Cardiak-mediated pathways. J. Biol. Chem. 278, 31941–31949 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Kufer, T. A., Kremmer, E., Banks, D. J. & Philpott, D. J. Role for erbin in bacterial activation of Nod2. Infect. Immun. 74, 3115–3124 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McDonald, C. et al. A role for Erbin in the regulation of Nod2-dependent NF-kappaB signaling. J. Biol. Chem. 280, 40301–40309 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Kummer, J. A. et al. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J. Histochem. Cytochem. 55, 443–452 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Meylan, E., Tschopp, J. & Karin, M. Intracellular pattern recognition receptors in the host response. Nature 442, 39–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Ogura, Y., Sutterwala, F. S. & Flavell, R. A. The inflammasome: first line of the immune response to cell stress. Cell 126, 659–662 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Li, H., Willingham, S. B., Ting, J. P. & Re, F. Cutting edge: inflammasome activation by alum and alum's adjuvant effect are mediated by NLRP3. J. Immunol. 181, 17–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Eisenbarth, S. C., Colegio, O. R., O'Connor, W., Sutterwala, F. S. & Flavell, R. A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857–865 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Petrilli, V., Dostert, C., Muruve, D. A. & Tschopp, J. The inflammasome: a danger sensing complex triggering innate immunity. Curr. Opin. Immunol. 19, 615–622 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Lamkanfi, M. & Dixit, V. M. Inflammasomes: guardians of cytosolic sanctity. Immunol. Rev. 227, 95–105 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Franchi, L., Eigenbrod, T., Munoz-Planillo, R. & Nunez, G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 10, 241–247 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Mayor, A., Martinon, F., De Smedt, T., Petrilli, V. & Tschopp, J. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat. Immunol. 8, 497–503 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Andrei, C. et al. Phospholipases C and A2 control lysosome-mediated IL-1 beta secretion: implications for inflammatory processes. Proc. Natl Acad. Sci. USA 101, 9745–9750 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. MacKenzie, A. et al. Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity 15, 825–835 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Pizzirani, C. et al. Stimulation of P2 receptors causes release of IL-1beta-loaded microvesicles from human dendritic cells. Blood 109, 3856–3864 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Kersse, K., Vanden Berghe, T., Lamkanfi, M. & Vandenabeele, P. A phylogenetic and functional overview of inflammatory caspases and caspase-1-related CARD-only proteins. Biochem. Soc. Trans. 35, 1508–1511 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Ting, J. P., Willingham, S. B. & Bergstralh, D. T. NLRs at the intersection of cell death and immunity. Nat. Rev. Immunol. 8, 372–379 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by NIH grants. Space limitations precluded citation of many original publications, and we apologize for these omissions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Argyrios N. Theofilopoulos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baccala, R., Gonzalez-Quintial, R., Lawson, B. et al. Sensors of the innate immune system: their mode of action. Nat Rev Rheumatol 5, 448–456 (2009). https://doi.org/10.1038/nrrheum.2009.136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2009.136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing