Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nonconventional MRI and microstructural cerebral changes in multiple sclerosis

Key Points

  • MRI scanner performance and the development of multiple advanced techniques have progressed to an extent that nonconventional MRI can now be used in clinical routine

  • These techniques have unravelled the diversity of microstructural tissue changes not visible with conventional MRI, which correlate with rather specific pathophysiological processes, as well as with some clinical variables

  • Several other techniques—including myelin-water imaging, 23Na imaging, magnetic resonance elastography and magnetic resonance perfusion imaging—promise further insights

  • The utility of these techniques in clinical trials and their applicability to clinical practice have not yet been established

  • Facilitating the use of these techniques in future research and clinical practice will require standardization of protocols and harmonization of postprocessing and analysis methods

Abstract

MRI has become the most important paraclinical tool for diagnosing and monitoring patients with multiple sclerosis (MS). However, conventional MRI sequences are largely nonspecific in the pathology they reveal, and only provide a limited view of the complex morphological changes associated with MS. Nonconventional MRI techniques, such as magnetization transfer imaging (MTI), diffusion-weighted imaging (DWI) and susceptibility-weighted imaging (SWI) promise to complement existing techniques by revealing more-specific information on microstructural tissue changes. Past years have witnessed dramatic advances in the acquisition and analysis of such imaging data, and numerous studies have used these tools to probe tissue alterations associated with MS. Other MRI-based techniques—such as myelin-water imaging, 23Na imaging, magnetic resonance elastography and magnetic resonance perfusion imaging—might also shed new light on disease-associated changes. This Review summarizes the rapid technical progress in the use of MRI in patients with MS, with a focus on nonconventional structural MRI. We critically discuss the present utility of nonconventional MRI in MS, and provide an outlook on future applications, including clinical practice. This information should allow appropriate selection of advanced MRI techniques, and facilitate their use in future studies of this disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of tissue and lesion appearance on conventional and nonconventional MRI.

Similar content being viewed by others

References

  1. Rovira, À. et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis—clinical implementation in the diagnostic process. Nat. Rev. Neurol. 11, 471–482 (2015).

    PubMed  Google Scholar 

  2. Wattjes, M. et al. MAGNIMS consensus guidelines on the use of MRi in multiple sclerosis—establishing disease prognosis and monitoring patients. Nat. Rev. Neurol. 11, 597–606 (2015).

    CAS  PubMed  Google Scholar 

  3. Filippi, M. & Agosta, F. Imaging biomarkers in multiple sclerosis. J. Magn. Reson. Imaging 31, 770–788 (2010).

    CAS  PubMed  Google Scholar 

  4. Filippi, M. et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 11, 349–360 (2012).

    PubMed  Google Scholar 

  5. Henkelman, R. M. et al. Quantitative interpretation of magnetization transfer. Magn. Reson. Med. 29, 759–766 (1993).

    CAS  PubMed  Google Scholar 

  6. Henkelman, R., Stanisz, G & Graham, S. J. Magnetization transfer in MRI: a review. NMR Biomed. 14, 57–64 (2001).

    CAS  PubMed  Google Scholar 

  7. Sled, J. G. & Pike, G. B. Quantitative interpretation of magnetization transfer in spoiled gradient echo MRI sequences. J. Magn. Reson. 145, 24–36 (2000).

    CAS  PubMed  Google Scholar 

  8. Garcia, M. et al. Fast high-resolution brain imaging with balanced SSFP: interpretation of quantitative magnetization transfer towards simple MTR. Neuroimage 59, 202–211 (2012).

    CAS  PubMed  Google Scholar 

  9. Amann, M. et al. Comparison between balanced steady-state free precession and standard spoiled gradient echo magnetization transfer ratio imaging in multiple sclerosis: methodical and clinical considerations. Neuroimage 108, 87–94 (2015).

    PubMed  Google Scholar 

  10. Bieri, O. & Scheffler, K. Optimized balanced steady-state free precession magnetization transfer imaging. Magn. Reson. Med. 58, 511–518 (2007).

    CAS  PubMed  Google Scholar 

  11. Yarnykh, V. L. Fast macromolecular proton fraction mapping from a single off-resonance magnetization transfer measurement. Magn. Reson. Med. 68, 166–178 (2012).

    CAS  PubMed  Google Scholar 

  12. Mangia, S., De Martino, F., Liimatainen, T., Garwood, M. & Michaeli, S. Magnetization transfer using inversion recovery during off-resonance irradiation. Magn. Reson. Imaging 29, 1346–1350 (2011).

    PubMed  PubMed Central  Google Scholar 

  13. Li, K. et al. Optimized inversion recovery sequences for quantitative T1 and magnetization transfer imaging. Magn. Reson. Med. 64, 491–500 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. Wu, Y. et al. Comprehensive brain analysis with automated high-resolution magnetization transfer measurements. J. Magn. Reson. Imaging 35, 309–317 (2012).

    PubMed  Google Scholar 

  15. Soellinger, M., Langkammer, C., Seifert-Held, T., Fazekas, F. & Ropele, S. Fast bound pool fraction mapping using stimulated echoes. Magn. Reson. Med. 66, 717–724 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Helms, G., Dathe, H., Kallenberg, K. & Dechent, P. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI. Magn. Reson. Med. 60, 1396–1407 (2008).

    PubMed  Google Scholar 

  17. Varma, G., Duhamel, G., de Bazelaire, C. & Alsop, D. C. Magnetization transfer from inhomogeneously broadened lines: a potential marker for myelin. Magn. Reson. Med. 73, 614–622 (2015).

    CAS  PubMed  Google Scholar 

  18. Girard, O. M. et al. Magnetization transfer from inhomogeneously broadened lines (ihMT): experimental optimization of saturation parameters for human brain imaging at 1.5 Tesla. Magn. Reson. Med. 73, 2111–2121 (2015).

    PubMed  Google Scholar 

  19. Lee, J. S., Xia, D., Ge, Y., Jerschow, A. & Regatte, R. R. Concurrent saturation transfer contrast in in vivo brain by a uniform magnetization transfer MRI. Neuroimage 95, 22–28 (2014).

    PubMed  PubMed Central  Google Scholar 

  20. Ropele, S. & Fazekas, F. Magnetization transfer MR imaging in multiple sclerosis. Neuroimaging Clin. N. Am. 19, 27–36 (2009).

    PubMed  Google Scholar 

  21. Schmierer, K., Scaravilli, F., Altmann, D. R., Barker, G. J. & Miller, D. H. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann. Neurol. 56, 407–415 (2004).

    PubMed  Google Scholar 

  22. Bot, J. C. et al. The spinal cord in multiple sclerosis: relationship of high-spatial-resolution quantitative MR imaging findings to histopathologic results. Radiology 233, 531–540 (2004).

    PubMed  Google Scholar 

  23. Filippi, M. et al. Magnetic resonance techniques in multiple sclerosis: the present and the future. Arch. Neurol. 68, 1514–1520 (2011).

    PubMed  Google Scholar 

  24. Fazekas, F., Ropele, S., Enzinger, C., Seifert, T. & Strasser-Fuchs, S. Quantitative magnetization transfer imaging of pre-lesional white-matter changes in multiple sclerosis. Mult. Scler. 8, 479–484 (2002).

    CAS  PubMed  Google Scholar 

  25. Chen, J. T. et al. Magnetization transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesions. Ann. Neurol. 63, 254–262 (2008).

    PubMed  Google Scholar 

  26. Agosta, F. et al. Magnetization transfer MRI metrics predict the accumulation of disability 8 years later in patients with multiple sclerosis. Brain 129, 2620–2627 (2006).

    PubMed  Google Scholar 

  27. Rocca, M. A., Mastronardo, G., Rodegher, M., Comi, G. & Filippi, M. Long-term changes of magnetization transfer-derived measures from patients with relapsing-remitting and secondary progressive multiple sclerosis. AJNR Am. J. Neuroradiol. 20, 821–827 (1999).

    CAS  PubMed  Google Scholar 

  28. Filippi, M. & Rocca, M. A. Magnetization transfer magnetic resonance imaging of the brain, spinal cord, and optic nerve. Neurotherapeutics 4, 401–413 (2007).

    PubMed  Google Scholar 

  29. Hayton, T. et al. Grey matter magnetization transfer ratio independently correlates with neurological deficit in secondary progressive multiple sclerosis. J. Neurol. 256, 427–435 (2009).

    CAS  PubMed  Google Scholar 

  30. Rovaris, M. et al. Large-scale, multicentre, quantitative MRI study of brain and cord damage in primary progressive multiple sclerosis. Mult. Scler. 14, 455–464 (2008).

    PubMed  Google Scholar 

  31. Ranjeva, J. P. et al. Local tissue damage assessed with statistical mapping analysis of brain magnetization transfer ratio: relationship with functional status of patients in the earliest stage of multiple sclerosis. AJNR Am. J. Neuroradiol. 26, 119–127 (2005).

    PubMed  Google Scholar 

  32. Amato, M. P. et al. Cognitive assessment and quantitative magnetic resonance metrics can help to identify benign multiple sclerosis. Neurology 71, 632–638 (2008).

    CAS  PubMed  Google Scholar 

  33. Tur, C. et al. Grey matter damage and overall cognitive impairment in primary progressive multiple sclerosis. Mult. Scler. 17, 1324–1332 (2011).

    CAS  PubMed  Google Scholar 

  34. Khaleeli, Z. et al. Magnetization transfer ratio in gray matter: a potential surrogate marker for progression in early primary progressive multiple sclerosis. Arch. Neurol. 65, 1454–1459 (2008).

    PubMed  Google Scholar 

  35. Penny, S., Khaleeli, Z., Cipolotti, L., Thompson, A. & Ron, M. Early imaging predicts later cognitive impairment in primary progressive multiple sclerosis. Neurology 74, 545–552 (2010).

    CAS  PubMed  Google Scholar 

  36. Filippi, M. et al. Gray matter damage predicts the accumulation of disability 13 years later in MS. Neurology 81, 1759–1767 (2013).

    PubMed  Google Scholar 

  37. Chen, J. T. et al. Clinically feasible MTR is sensitive to cortical demyelination in MS. Neurology 80, 246–252 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Samson, R. S. et al. Investigation of outer cortical magnetisation transfer ratio abnormalities in multiple sclerosis clinical subgroups. Mult. Scler. 20, 1322–1330 (2014).

    PubMed  Google Scholar 

  39. Derakhshan, M., Caramanos, Z., Narayanan, S., Arnold, D. L. & Louis Collins, D. Surface-based analysis reveals regions of reduced cortical magnetization transfer ratio in patients with multiple sclerosis: a proposed method for imaging subpial demyelination. Hum. Brain Mapp. 35, 3402–3413 (2014).

    PubMed  Google Scholar 

  40. Basser, P. J., Mattiello, J. & LeBihan, D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103, 247–254 (1994).

    CAS  PubMed  Google Scholar 

  41. Wheeler-Kingshott, C. A., Ciccarelli, O., Schneider, T., Alexander, D. C. & Cercignani, M. A new approach to structural integrity assessment based on axial and radial diffusivities. Funct. Neurol. 27, 85–90 (2012).

    PubMed  PubMed Central  Google Scholar 

  42. Ferizi, U. et al. A ranking of diffusion MRI compartment models with in vivo human brain data. Magn. Reson. Med. 72, 1785–1792 (2014).

    PubMed  Google Scholar 

  43. Zhang, H., Schneider, T., Wheeler-Kingshott, C. A. & Alexander, D. C. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61, 1000–1016 (2012).

    PubMed  Google Scholar 

  44. Jelescu, I. O. et al. One diffusion acquisition and different white matter models: how does microstructure change in human early development based on WMTI and NODDI? Neuroimage 107, 242–256 (2015).

    PubMed  Google Scholar 

  45. Wang, Y. et al. Quantification of increased cellularity during inflammatory demyelination. Brain 134, 3590–3601 (2011).

    PubMed  Google Scholar 

  46. Bester, M. et al. Non-Gaussian diffusion MRI of gray matter is associated with cognitive impairment in multiple sclerosis. Mult. Scler. 21, 935–944 (2015).

    CAS  PubMed  Google Scholar 

  47. Raz, E. et al. A better characterization of spinal cord damage in multiple sclerosis: a diffusional kurtosis imaging study. AJNR Am. J. Neuroradiol. 34, 1846–1852 (2013).

    CAS  PubMed  Google Scholar 

  48. Palesi, F. et al. Contralateral cerebello-thalamo-cortical pathways with prominent involvement of associative areas in humans in vivo. Brain Struct. Funct. 220, 3369–3384 (2015).

    PubMed  Google Scholar 

  49. Sherbondy, A. J., Rowe, M. C. & Alexander, D. C. MicroTrack: an algorithm for concurrent projectome and microstructure estimation. Med. Image Comput. Comput. Assist. Interv. 13, 183–190 (2010).

    PubMed  Google Scholar 

  50. Rovaris, M. et al. Diffusion MRI in multiple sclerosis. Neurology 65, 1526–1532 (2005).

    CAS  PubMed  Google Scholar 

  51. Bodini, B. & Ciccarelli, O. in Diffusion MRI: from Quantitative Measurement to In Vivo Neuroanatomy (eds Johansen-Berg, H. & Behrens, T. E.) 175–203 (Elsevier, 2009).

    Google Scholar 

  52. Schmierer, K. et al. Diffusion tensor imaging of post mortem multiple sclerosis brain. Neuroimage 35, 467–477 (2007).

    PubMed  PubMed Central  Google Scholar 

  53. Seewann, A. et al. Diffusely abnormal white matter in chronic multiple sclerosis: imaging and histopathologic analysis. Arch. Neurol. 66, 601–609 (2009).

    PubMed  Google Scholar 

  54. Bodini, B. et al. Corpus callosum damage predicts disability progression and cognitive dysfunction in primary-progressive MS after five years. Hum. Brain Mapp. 34, 1163–1172 (2013).

    PubMed  Google Scholar 

  55. Dineen, R. A. et al. Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain 132, 239–249 (2009).

    CAS  PubMed  Google Scholar 

  56. Schoonheim, M. M. et al. Thalamus structure and function determine severity of cognitive impairment in multiple sclerosis. Neurology 84, 776–783 (2015).

    PubMed  Google Scholar 

  57. Hulst, H. E. et al. Cognitive impairment in MS: impact of white matter integrity, gray matter volume, and lesions. Neurology 80, 1025–1032 (2013).

    CAS  PubMed  Google Scholar 

  58. Welton, T., Kent, D., Constantinescu, C. S., Auer, D. P. & Dineen, R. A. Functionally relevant white matter degradation in multiple sclerosis: a tract-based spatial meta-analysis. Radiology 275, 89–96 (2015).

    PubMed  Google Scholar 

  59. Mesaros, S. et al. Diffusion tensor MRI tractography and cognitive impairment in multiple sclerosis. Neurology 78, 969–975 (2012).

    CAS  PubMed  Google Scholar 

  60. Shu, N. et al. Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis. Cereb. Cortex 21, 2565–2577 (2011).

    PubMed  Google Scholar 

  61. Bodini, B. et al. Exploring the relationship between white matter and gray matter damage in early primary progressive multiple sclerosis: an in vivo study with TBSS and VBM. Hum. Brain Mapp. 30, 2852–2861 (2009).

    PubMed  Google Scholar 

  62. Steenwijk, M. D. et al. Unraveling the relationship between regional gray matter atrophy and pathology in connected white matter tracts in long-standing multiple sclerosis. Hum. Brain Mapp. 36, 1796–1807 (2015).

    PubMed  Google Scholar 

  63. Sbardella, E. et al. Assessing the correlation between grey and white matter damage with motor and cognitive impairment in multiple sclerosis patients. PLoS ONE 8, e63250 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Schenck, J. F. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med. Phys. 23, 815–850 (1996).

    CAS  PubMed  Google Scholar 

  65. Ropele, S. et al. Determinants of iron accumulation in deep grey matter of multiple sclerosis patients. Mult. Scler. 20, 1692–1698 (2014).

    CAS  PubMed  Google Scholar 

  66. Wang, Y. & Liu, T. Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn. Reson. Med. 73, 82–101 (2015).

    CAS  PubMed  Google Scholar 

  67. Langkammer, C. et al. Quantitative susceptibility mapping in multiple sclerosis. Radiology 267, 551–559 (2013).

    PubMed  PubMed Central  Google Scholar 

  68. Haacke, E. M., Mittal, S., Wu, Z., Neelavalli, J. & Cheng, Y. C. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am. J. Neuroradiol. 30, 19–30 (2009).

    CAS  PubMed  Google Scholar 

  69. Tallantyre, E. C. et al. Ultra-high-field imaging distinguishes MS lesions from asymptomatic white matter lesions. Neurology 76, 534–539 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wuerfel, J. et al. Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Mult. Scler. 18, 1592–1599 (2012).

    PubMed  Google Scholar 

  71. Sinnecker, T. et al. Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology 79, 708–714 (2012).

    PubMed  Google Scholar 

  72. Kilsdonk, I. D. et al. Improved differentiation between MS and vascular brain lesions using FLAIR* at 7 Tesla. Eur. Radiol. 24, 841–849 (2014).

    PubMed  Google Scholar 

  73. Quinn, M. P., Kremenchutzky, M. & Menon, R. S. Venocentric lesions: an MRI marker of MS? Front. Neurol. 4, 98 (2013).

    PubMed  PubMed Central  Google Scholar 

  74. Hagemeier, J. et al. Phase white matter signal abnormalities in patients with clinically isolated syndrome and other neurologic disorders. AJNR Am. J. Neuroradiol. 35, 1916–1923 (2014).

    CAS  PubMed  Google Scholar 

  75. Absinta, M. et al. Seven-tesla phase imaging of acute multiple sclerosis lesions: a new window into the inflammatory process. Ann. Neurol. 74, 669–678 (2013).

    CAS  PubMed  Google Scholar 

  76. Chen, W. et al. Quantitative susceptibility mapping of multiple sclerosis lesions at various ages. Radiology 271, 183–192 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Mehta, V. et al. Iron is a sensitive biomarker for inflammation in multiple sclerosis lesions. PLoS ONE 8, e57573 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hametner, S. et al. Iron and neurodegeneration in the multiple sclerosis brain. Ann. Neurol. 74, 848–861 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Williams, R., Buchheit, C. L., Berman, N. E. & LeVine, S. M. Pathogenic implications of iron accumulation in multiple sclerosis. J. Neurochem. 120, 7–25 (2012).

    CAS  PubMed  Google Scholar 

  80. Stankiewicz, J. M., Neema, M. & Ceccarelli, A. Iron and multiple sclerosis. Neurobiol. Aging 35 (Suppl. 2), S51–S58 (2014).

    CAS  PubMed  Google Scholar 

  81. Stephenson, E., Nathoo, N., Mahjoub, Y., Dunn, J. F. & Yong, V. W. Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat. Rev. Neurol. 10, 459–468 (2014).

    CAS  PubMed  Google Scholar 

  82. Langkammer, C. et al. Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 257, 455–462 (2010).

    PubMed  Google Scholar 

  83. Walsh, A. J. et al. Multiple sclerosis: validation of MR imaging for quantification and detection of iron. Radiology 267, 531–542 (2013).

    PubMed  Google Scholar 

  84. Walsh, A. J. et al. Longitudinal MR imaging of iron in multiple sclerosis: an imaging marker of disease. Radiology 270, 186–196 (2014).

    PubMed  Google Scholar 

  85. Khalil, M., et al. Dynamics of brain iron levels in multiple sclerosis: a longitudinal 3T MRI study. Neurology 84, 2396–2402 (2015).

    CAS  PubMed  Google Scholar 

  86. Khalil, M. et al. Determinants of brain iron in multiple sclerosis: a quantitative 3T MRI study. Neurology 77, 1691–1697 (2011).

    CAS  PubMed  Google Scholar 

  87. MacKay, A. et al. In vivo visualization of myelin water in brain by magnetic resonance. Magn. Reson. Med. 31, 673–677 (1994).

    CAS  PubMed  Google Scholar 

  88. Prasloski, T. et al. Rapid whole cerebrum myelin water imaging using a 3D GRASE sequence. Neuroimage 63, 533–539 (2012).

    PubMed  Google Scholar 

  89. Laule, C. et al. Myelin water imaging of multiple sclerosis at 7 T: correlations with histopathology. Neuroimage 40, 1575–1580 (2008).

    PubMed  Google Scholar 

  90. Levesque, I. R. et al. Quantitative magnetization transfer and myelin water imaging of the evolution of acute multiple sclerosis lesions. Magn. Reson. Med. 63, 633–640 (2010).

    PubMed  Google Scholar 

  91. Craner, M. J. et al. Molecular changes in neurons in multiple sclerosis: altered axonal expression of NaV1.2 and NaV1.6 sodium channels and Na+/Ca2+ exchanger. Proc. Natl Acad. Sci. USA 101, 8168–8173 (2004).

    CAS  PubMed  Google Scholar 

  92. Black, J. A., Newcombe, J. & Waxman, S. G. Astrocytes within multiple sclerosis lesions upregulate sodium channel NaV1.5. Brain 133, 835–846 (2010).

    PubMed  Google Scholar 

  93. Romanzetti, S. et al. Mapping tissue sodium concentration in the human brain: a comparison of MR sequences at 9.4Tesla. Neuroimage 96, 44–53 (2014).

    CAS  PubMed  Google Scholar 

  94. Inglese, M. et al. Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 tesla. Brain 133, 847–857 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Basford, J. R. et al. Evaluation of healthy and diseased muscle with magnetic resonance elastography. Arch. Phys. Med. Rehabil. 83, 1530–1536 (2002).

    PubMed  Google Scholar 

  96. Papazoglou, S., Rump, J., Braun, J. & Sack, I. Shear wave group velocity inversion in MR elastography of human skeletal muscle. Magn. Reson. Med. 56, 489–497 (2006).

    PubMed  Google Scholar 

  97. McKnight, A. L. et al. MR elastography of breast cancer: preliminary results. AJR Am. J. Roentgenol. 178, 1411–1417 (2002).

    PubMed  Google Scholar 

  98. Asbach, P. et al. Assessment of liver viscoelasticity using multifrequency MR elastography. Magn. Reson. Med. 60, 373–379 (2008).

    PubMed  Google Scholar 

  99. Muthupillai, R. & Ehman, R. L. Magnetic resonance elastography. Nat. Med. 2, 601–603 (1996).

    CAS  PubMed  Google Scholar 

  100. Green, M. A., Bilston, L. E. & Sinkus, R. In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 21, 755–764 (2008).

    PubMed  Google Scholar 

  101. Kruse, S. A. et al. Magnetic resonance elastography of the brain. Neuroimage 39, 231–237 (2008).

    PubMed  Google Scholar 

  102. Sack, I., Beierbach, B., Hamhaber, U., Klatt, D. & Braun, J. Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography. NMR Biomed. 21, 265–271 (2008).

    PubMed  Google Scholar 

  103. Sack, I. et al. The impact of aging and gender on brain viscoelasticity. Neuroimage 46, 652–657 (2009).

    PubMed  Google Scholar 

  104. Wuerfel, J. et al. MR-elastography reveals degradation of tissue integrity in multiple sclerosis. Neuroimage 49, 2520–2525 (2010).

    PubMed  Google Scholar 

  105. Pittock, S. J. & Lucchinetti, C. F. The pathology of MS: new insights and potential clinical applications. Neurologist 13, 45–56 (2007).

    PubMed  Google Scholar 

  106. Streitberger, K. J. et al. Brain viscoelasticity alteration in chronic–progressive multiple sclerosis. PLoS ONE 7, e29888 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Schregel, K. et al. Demyelination reduces brain parenchymal stiffness quantified in vivo by magnetic resonance elastography. Proc. Natl Acad. Sci. USA 109, 6650–6655 (2012).

    CAS  PubMed  Google Scholar 

  108. Paling, D. et al. Cerebral arterial bolus arrival time is prolonged in multiple sclerosis and associated with disability. J. Cereb. Blood Flow Metab. 34, 34–42 (2014).

    PubMed  Google Scholar 

  109. Rashid, W. et al. Abnormalities of cerebral perfusion in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 75, 1288–1293 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Law, M. et al. Microvascular abnormality in relapsing–remitting multiple sclerosis: perfusion MR imaging findings in normal-appearing white matter. Radiology 231, 645–652 (2004).

    PubMed  Google Scholar 

  111. Adhya, S. et al. Pattern of hemodynamic impairment in multiple sclerosis: dynamic susceptibility contrast perfusion MR imaging at 3.0 T. Neuroimage 33, 1029–1035 (2006).

    PubMed  PubMed Central  Google Scholar 

  112. Filippi, M. et al. Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann. Neurol. 43, 499–506 (1998).

    CAS  PubMed  Google Scholar 

  113. Barkhof, F. et al. MRI monitoring of immunomodulation in relapse–onset multiple sclerosis trials. Nat. Rev. Neurol. 8, 13–21 (2011).

    PubMed  Google Scholar 

  114. De Stefano, N. et al. Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology 74, 1868–1876 (2010).

    CAS  PubMed  Google Scholar 

  115. Rocca, M. A. et al. A three-year, multi-parametric MRI study in patients at presentation with CIS. J. Neurol. 255, 683–691 (2008).

    PubMed  Google Scholar 

  116. Pagani, E. et al. Intercenter differences in diffusion tensor MRI acquisition. J. Magn. Reson. Imaging 31, 1458–1468 (2010).

    PubMed  Google Scholar 

  117. Ropele, S. et al. Assessment and correction of B1-induced errors in magnetization transfer ratio measurements. Magn. Reson. Med. 53, 134–140 (2005).

    PubMed  Google Scholar 

  118. Inglese, M. et al. The effect of interferon β-1b on quantities derived from MT MRI in secondary progressive MS. Neurology 60, 853–860 (2003).

    CAS  PubMed  Google Scholar 

  119. Filippi, M. et al. European study on intravenous immunoglobulin in multiple sclerosis: results of magnetization transfer magnetic resonance imaging analysis. Arch. Neurol. 61, 1409–1412 (2004).

    PubMed  Google Scholar 

  120. Narayanan, S. et al. Axonal metabolic recovery in multiple sclerosis patients treated with interferon β-1b. J. Neurol. 248, 979–986 (2001).

    CAS  PubMed  Google Scholar 

  121. Sajja, B. R., Narayana, P. A., Wolinsky, J. S. & Ahn, C. W. Longitudinal magnetic resonance spectroscopic imaging of primary progressive multiple sclerosis patients treated with glatiramer acetate: multicenter study. Mult. Scler. 14, 73–80 (2008).

    CAS  PubMed  Google Scholar 

  122. van den Elskamp, I. J. et al. Lesional magnetization transfer ratio: a feasible outcome for remyelinating treatment trials in multiple sclerosis. Mult. Scler. 16, 660–669 (2010).

    CAS  PubMed  Google Scholar 

  123. Brown, R. A., Narayanan, S. & Arnold, D. L. Segmentation of magnetization transfer ratio lesions for longitudinal analysis of demyelination and remyelination in multiple sclerosis. Neuroimage 66, 103–109 (2013).

    PubMed  Google Scholar 

  124. Zivadinov, R. et al. Voxel-wise magnetization transfer imaging study of effects of natalizumab and IFNβ-1a in multiple sclerosis. Mult. Scler. 18, 1125–1134 (2012).

    CAS  PubMed  Google Scholar 

  125. Button, T. et al. Magnetization transfer imaging in multiple sclerosis treated with alemtuzumab. Mult. Scler. 19, 241–244 (2013).

    PubMed  Google Scholar 

  126. Filippi, M. et al. Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J. Neurol. Neurosurg. Psychiatry 85, 851–858 (2014).

    PubMed  Google Scholar 

  127. Hayton, T. et al. Longitudinal changes in magnetisation transfer ratio in secondary progressive multiple sclerosis: data from a randomised placebo controlled trial of lamotrigine. J. Neurol. 259, 505–514 (2012).

    CAS  PubMed  Google Scholar 

  128. Bonzano, L. et al. Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis. Neuroimage 90, 107–116 (2014).

    PubMed  Google Scholar 

  129. Prosperini, L. et al. Multiple sclerosis: changes in microarchitecture of white matter tracts after training with a video game balance board. Radiology 273, 529–538 (2014).

    PubMed  Google Scholar 

  130. Horsfield, M. A. et al. Guidelines for using quantitative magnetization transfer magnetic resonance imaging for monitoring treatment of multiple sclerosis. J. Magn. Reson. Imaging 17, 389–397 (2003).

    PubMed  Google Scholar 

  131. Pagani, E. et al. Diffusion MR imaging in multiple sclerosis: technical aspects and challenges. AJNR Am. J. Neuroradiol. 28, 411–420 (2007).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Contributions

All authors helped research data for the article, and C.E., F.B., O.C., M.F., L.K., M.A.R., S.R., À.R., N.d.S., H.V., C.W.-K., J.W. and F.F. wrote the article. All authors made substantial contributions to the discussion of content, and C.E., M.F., M.A.R., S.R., À.R. and F.F. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Franz Fazekas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enzinger, C., Barkhof, F., Ciccarelli, O. et al. Nonconventional MRI and microstructural cerebral changes in multiple sclerosis. Nat Rev Neurol 11, 676–686 (2015). https://doi.org/10.1038/nrneurol.2015.194

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.194

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing