Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cerebrospinal fluid biomarkers in Parkinson disease

Abstract

Clinical diagnosis of Parkinson disease (PD) is difficult in early stages of disease, with high risk of misdiagnosis. The long preclinical phase of PD provides the possibility for early therapeutic intervention once disease-modifying therapies have been developed, but lack of biomarkers for early diagnosis and monitoring of disease progression represents a major obstacle to achievement of this goal. Accordingly, research efforts aimed at identification of novel biomarkers have been increasing in the past 5 years. Cerebrospinal fluid (CSF) is an accessible source of brain-derived proteins, which mirror molecular changes that take place in the CNS. In this Review, we discuss evidence from numerous studies that have focused on identification of candidate CSF biomarkers for PD. Notably, molecular pathways related to α-synuclein, tau and β-amyloid peptides have received considerable attention. CSF levels of the protein DJ-1 are also of interest, although further investigation of this candidate marker is required. These studies support the usefulness of a combination of various CSF biomarkers of PD to increase diagnostic accuracy during early phases of the disease, and to differentiate PD from other neurodegenerative disorders.

Key Points

  • Clinical diagnosis of Parkinson disease (PD) can be difficult at early stages of the disease course

  • Biomarkers for diagnosis and prognosis of PD are not currently available

  • Cerebrospinal fluid levels of α-synuclein, DJ-1, amyloid-β1–42, tau and lysosomal enzymes are promising candidates for PD biomarkers

  • When used alone, these biomarkers have low specificity and sensitivity for PD

  • Combination of several biomarkers that reflect different pathogenic pathways is necessary

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Putative pathogenic pathways underlying CSF biomarkers of PD.

Similar content being viewed by others

References

  1. Lees, A. J., Hardy, J. & Revesz, T. Parkinson's disease. Lancet 373, 2055–2066 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Wu, Y., Le, W. & Jankovic, J. Preclinical biomarkers of Parkinson disease. Arch. Neurol. 68, 22–30 (2011).

    PubMed  Google Scholar 

  3. Marras, C. & Lang, A. Parkinson's disease subtypes: lost in translation? J. Neurol. Neurosurg. Psychiatry http://dx.doi.org/10.1136/jnnp-2012-303455.

  4. van Dijk, K. D. et al. Diagnostic cerebrospinal fluid biomarkers for Parkinson's disease: a pathogenetically based approach. Neurobiol. Dis. 39, 229–241 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dubois, B. et al. Revising the definition of Alzheimer's disease: a new lexicon. Lancet Neurol. 9, 1118–1127 (2010).

    Article  PubMed  Google Scholar 

  6. McKhann, G. M. Changing concepts of Alzheimer disease. JAMA 305, 2458–2459 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Nyhlen, J., Constantinescu, R. & Zetterberg, H. Problems associated with fluid biomarkers for Parkinson's disease. Biomark. Med. 4, 671–681 (2010).

    Article  PubMed  Google Scholar 

  8. Parnetti, L. et al. Cerebrospinal fluid Tau/α-synuclein ratio in Parkinson's disease and degenerative dementias. Mov. Disord. 26, 1428–1435 (2011).

    Article  PubMed  Google Scholar 

  9. Giasson, B. I., Lee, V. M. & Trojanowski, J. Q. Interactions of amyloidogenic proteins. Neuromolecular Med. 4, 49–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Giasson, B. I. et al. Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300, 636–640 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Waxman, E. A. & Giasson, B. I. Induction of intracellular tau aggregation is promoted by α-synuclein seeds and provides novel insights into the hyperphosphorylation of tau. J. Neurosci. 31, 7604–7618 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee, V. M., Giasson, B. I. & Trojanowski, J. Q. More than just two peas in a pod: common amyloidogenic properties of tau and α-synuclein in neurodegenerative diseases. Trends Neurosci. 27, 129–134 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Vekrellis, K., Xilouri, M., Emmanouilidou, E., Rideout, H. J. & Stefanis, L. Pathological roles of α-synuclein in neurological disorders. Lancet Neurol. 10, 1015–1025 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Westbroek, W., Gustafson, A. M. & Sidransky, E. Exploring the link between glucocerebrosidase mutations and parkinsonism. Trends Mol. Med. 17, 485–493 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sidransky, E. et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N. Engl. J. Med. 361, 1651–1661 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Velayati, A., Yu, W. H. & Sidransky, E. The role of glucocerebrosidase mutations in Parkinson disease and Lewy body disorders. Curr. Neurol. Neurosci. Rep. 10, 190–198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dehay, B. et al. Pathogenic lysosomal depletion in Parkinson's disease. J. Neurosci. 30, 12535–12544 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gegg, M. E. et al. Glucocerebrosidase deficiency in substantia nigra of Parkinson disease brains. Ann. Neurol. 72, 455–463 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shachar, T. et al. Lysosomal storage disorders and Parkinson's disease: Gaucher disease and beyond. Mov. Disord. 26, 1593–1604 (2011).

    Article  PubMed  Google Scholar 

  20. Hong, Z. et al. DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson's disease. Brain 133, 713–726 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jakes, R., Spillantini, M. G. & Goedert, M. Identification of two distinct synucleins from human brain. FEBS Lett. 345, 27–32 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. George, J. M. The synucleins. Genome Biol. 3, reviews3002.1–reviews3002.6 (2002).

    Google Scholar 

  23. Tozzi, A. et al. Mechanisms underlying altered striatal synaptic plasticity in old A53T-α synuclein overexpressing mice. Neurobiol. Aging 33, 1792–1799 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Irvine, G. B., El-Agnaf, O. M., Shankar, G. M. & Walsh, D. M. Protein aggregation in the brain: the molecular basis for Alzheimer's and Parkinson's diseases. Mol. Med. 14, 451–464 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. & Goedert, M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proc. Natl Acad. Sci. USA 95, 6469–6473 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spillantini, M. G. et al. Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson's disease and dementia with Lewy bodies. Neurosci. Lett. 251, 205–208 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Polymeropoulos, M. H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Kruger, R. et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nat. Genet. 18, 106–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Zarranz, J. J. et al. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 55, 164–173 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Singleton, A. B. et al. α-Synuclein locus triplication causes Parkinson's disease. Science 302, 841–841 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Chartier-Harlin, M. C. et al. α-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364, 1167–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Satake, W. et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat. Genet. 41, 1303–1307 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Simon-Sanchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat. Genet. 41, 1308–1312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. El-Agnaf, O. M., Jakes, R., Curran, M. D. & Wallace, A. Effects of the mutations Ala30 to Pro and Ala53 to Thr on the physical and morphological properties of α-synuclein protein implicated in Parkinson's disease. FEBS Lett. 440, 67–70 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Hashimoto, M. et al. Human recombinant NACP/α-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease. Brain Res. 799, 301–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Conway, K. A., Harper, J. D. & Lansbury, P. T. Jr. Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry 39, 2552–2563 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. El-Agnaf, O. M. et al. Aggregates from mutant and wild-type α-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of β-sheet and amyloid-like filaments. FEBS Lett. 440, 71–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Borghi, R. et al. Full length α-synuclein is present in cerebrospinal fluid from Parkinson's disease and normal subjects. Neurosci. Lett. 287, 65–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Mollenhauer, B. et al. Direct quantification of CSF α-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Exp. Neurol. 213, 315–325 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Mollenhauer, B. et al. α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol. 10, 230–240 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Tokuda, T. et al. Decreased α-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson's disease. Biochem. Biophys. Res. Commun. 349, 162–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Tateno, F., Sakakibara, R., Kawai, T., Kishi, M. & Murano, T. α-synuclein in the cerebrospinal fluid differentiates synucleinopathies (Parkinson disease, dementia with Lewy bodies, multiple system atrophy) from Alzheimer disease. Alzheimer Dis. Assoc. Disord. 26, 213–216 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Noguchi-Shinohara, M. et al. CSF α-synuclein levels in dementia with Lewy bodies and Alzheimer's disease. Brain Res. 1251, 1–6 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Ohrfelt, A. et al. Cerebrospinal fluid α-synuclein in neurodegenerative disorders—a marker of synapse loss? Neurosci. Lett. 450, 332–335 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Spies, P. E., Melis, R. J., Sjögren, M. J., Rikkert, M. G. & Verbeek, M. M. Cerebrospinal fluid α-synuclein does not discriminate between dementia disorders. J. Alzheimers Dis. 16, 363–369 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Aerts, M. B., Esselink, R. A., Abdo, W. F., Bloem, B. R. & Verbeek, M. M. CSF α-synuclein does not differentiate between parkinsonian disorders. Neurobiol. Aging 33, 430.e1–430.e3 (2012).

    Article  CAS  Google Scholar 

  47. Tokuda, T. et al. Decreased α-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson's disease. Biochem. Biophys. Res. Commun. 349, 162–166 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Winner, B. et al. In vivo demonstration that α-synuclein oligomers are toxic. Proc. Natl Acad. Sci. USA 108, 4194–4199 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xu, J. et al. Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat. Med. 8, 600–606 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Paleologou, K. E. et al. Detection of elevated levels of soluble α-synuclein oligomers in post-mortem brain extracts from patients with dementia with Lewy bodies. Brain 132, 1093–1101 (2009).

    Article  PubMed  Google Scholar 

  51. Sharon, R. et al. The formation of highly soluble oligomers of α-synuclein is regulated by fatty acids and enhanced in Parkinson's disease. Neuron 37, 583–595 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. El-Agnaf, O. M., Walsh, D. M. & Allsop, D. Soluble oligomers for the diagnosis of neurodegenerative diseases. Lancet Neurol. 2, 461–462 (2003).

    Article  PubMed  Google Scholar 

  53. Tokuda, T. et al. Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. Neurology 75, 1766–1772 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Park, M. J., Cheon, S. M., Bae, H. R., Kim, S. H. & Kim, J. W. Elevated levels of α-synuclein oligomer in the cerebrospinal fluid of drug-naive patients with Parkinson's disease. J. Clin. Neurol. 7, 215–222 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sierks, M. R. et al. CSF levels of oligomeric alpha-synuclein and beta-amyloid as biomarkers for neurodegenerative disease. Integr. Biol. (Camb.) 3, 1188–1196 (2011).

    Article  CAS  Google Scholar 

  56. Foulds, P. G. et al. Post mortem cerebrospinal fluid α-synuclein levels are raised in multiple system atrophy and distinguish this from the other α-synucleinopathies, Parkinson's disease and Dementia with Lewy bodies. Neurobiol. Dis. 45, 188–195 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, Y. et al. Phosphorylated α-synuclein in Parkinson's disease. Sci. Transl. Med. 4, 121ra20 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. Bartels, T., Choi, J. G. & Selkoe, D. J. α-synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477, 107–110 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, W. et al. A soluble α-synuclein construct forms a dynamic tetramer. Proc. Natl Acad. Sci. USA 108, 17797–17802 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fauvet, B. et al. α-synuclein in the central nervous system and from erythrocytes, mammalian cells and Escherichia coli exists predominantly as a disordered monomer. J. Biol. Chem. 287, 15345–15364 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Waragai, M. et al. Increased level of DJ-1 in the cerebrospinal fluids of sporadic Parkinson's disease. Biochem. Biophys. Res. Commun. 345, 967–972 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Shi, M. et al. Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann. Neurol. 69, 570–580 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shi, M. et al. DJ-1 and αSYN in LRRK2 CSF do not correlate with striatal dopaminergic function. Neurobiol. Aging 33, 836.e5–836.e7 (2011).

    Article  CAS  Google Scholar 

  65. Aarsland, D., Bronnick, K., Larsen, J. P., Tysnes, O. B. & Alves, G. Cognitive impairment in incident, untreated Parkinson disease: the Norwegian ParkWest study. Neurology 72, 1121–1126 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Aarsland, D. & Kurz, M. W. The epidemiology of dementia associated with Parkinson disease. J. Neurol. Sci. 289, 18–22 (2010).

    Article  PubMed  Google Scholar 

  67. Hely, M. A., Reid, W. G., Adena, M. A., Halliday, G. M. & Morris, J. G. The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years. Mov. Disord. 23, 837–844 (2008).

    Article  PubMed  Google Scholar 

  68. Ballard, C. et al. Differences in neuropathologic characteristics across the Lewy body dementia spectrum. Neurology 67, 1931–1934 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  70. Jellinger, K. A. & Attems, J. Prevalence and impact of vascular and Alzheimer pathologies in Lewy body disease. Acta Neuropathol. 115, 427–436 (2008).

    Article  PubMed  Google Scholar 

  71. Hansen, L. et al. The Lewy body variant of Alzheimer's disease: a clinical and pathologic entity. Neurology 40, 1–8 (1990).

    Article  CAS  PubMed  Google Scholar 

  72. Clinton, L. K., Blurton-Jones, M., Myczek, K., Trojanowski, J. Q. & LaFerla, F. M. Synergistic interactions between Aβ, tau, and α-synuclein: acceleration of neuropathology and cognitive decline. J. Neurosci. 30, 7281–7289 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Masliah, E. Recent advances in the understanding of the role of synaptic proteins in Alzheimer's Disease and other neurodegenerative disorders. J. Alzheimers Dis. 3, 121–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Calabresi, P., Picconi, B., Parnetti, L. & Di Filippo, M. A convergent model for cognitive dysfunctions in Parkinson's disease: the critical dopamine-acetylcholine synaptic balance. Lancet Neurol. 5, 974–983 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Jellinger, K. A. Neuropathological aspects of Alzheimer disease, Parkinson disease and frontotemporal dementia. Neurodegener. Dis. 5, 118–121 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Blennow, K. & Hampel, H. CSF markers for incipient Alzheimer's disease. Lancet Neurol. 2, 605–613 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Bateman, R. J. et al. Autosomal-dominant Alzheimer's disease: a review and proposal for the prevention of Alzheimer's disease. Alzheimers Res. Ther. 3, 1 (2012).

    Article  Google Scholar 

  78. Mollenhauer, B. et al. Beta-amlyoid 1–42 and tau-protein in cerebrospinal fluid of patients with Parkinson's disease dementia. Dement. Geriatr. Cogn. Disord. 22, 200–208 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Montine, T. J. et al. CSF Aβ42 and tau in Parkinson's disease with cognitive impairment. Mov. Disord. 25, 2682–2685 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Parnetti, L. et al. Cerebrospinal fluid biomarkers in Parkinson's disease with dementia and dementia with Lewy bodies. Biol. Psychiatry 64, 850–855 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Sjögren, M. et al. Decreased CSF-β-amyloid 42 in Alzheimer's disease and amyotrophic lateral sclerosis may reflect mismetabolism of β-amyloid induced by disparate mechanisms. Dement. Geriatr. Cogn. Disord. 13, 112–118 (2002).

    Article  PubMed  Google Scholar 

  82. Alves, G. et al. CSF amyloid-β and tau proteins, and cognitive performance, in early and untreated Parkinson's disease: the Norwegian ParkWest study. J. Neurol. Neurosurg. Psychiatry 81, 1080–1086 (2010).

    Article  PubMed  Google Scholar 

  83. Přikrylová Vranová, H. et al. Tau protein and beta-amyloid1–42 CSF levels in different phenotypes of Parkinson's disease. J. Neural Transm. 119, 353–362 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Siderowf, A. et al. CSF amyloid β 1–42 predicts cognitive decline in Parkinson disease. Neurology 75, 1055–1061 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Blennow, K. et al. Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer disease? Mol. Chem. Neuropathol. 26, 231–245 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Mollenhauer, B. et al. Tauopathies and synucleinopathies: do cerebrospinal fluid β-amyloid peptides reflect disease-specific pathogenesis? J. Neural Transm. 114, 919–927 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, J. et al. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am. J. Clin. Pathol. 129, 526–529 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Přikrylová Vranová, H. et al. CSF markers of neurodegeneration in Parkinson's disease. J. Neural Transm. 117, 1177–1181 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Andersson, M., Zetterberg, H., Minthon, L., Blennow, K. & Londos, E. The cognitive profile and CSF biomarkers in dementia with Lewy bodies and Parkinson's disease dementia. Int. J. Geriatr. Psychiatry 26, 100–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Bech, S. et al. Amyloid-related biomarkers and axonal damage proteins in parkinsonian syndromes. Parkinsonism Relat. Disord. 18, 69–72 (2012).

    Article  PubMed  Google Scholar 

  91. Buongiorno, M., Compta, Y. & Marti, M. J. Amyloid-β and τ biomarkers in Parkinson's disease-dementia. J. Neurol. Sci. 310, 25–30 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Bibl, M. et al. CSF amyloid-β-peptides in Alzheimer's disease, dementia with Lewy bodies and Parkinson's disease dementia. Brain 129, 1177–1187 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Compta, Y. et al. Cerebrospinal tau, phospho-tau, and beta-amyloid and neuropsychological functions in Parkinson's disease. Mov. Disord. 24, 2203–2210 (2009).

    Article  PubMed  Google Scholar 

  94. Leverenz, J. B. et al. Cerebrospinal fluid biomarkers and cognitive performance in non-demented patients with Parkinson's disease. Parkinsonism Relat. Disord. 17, 61–64 (2011).

    Article  PubMed  Google Scholar 

  95. Burack, M. A. et al. In vivo amyloid imaging in autopsy-confirmed Parkinson disease with dementia. Neurology 74, 77–84 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maetzler, W. et al. [11C]PIB binding in Parkinson's disease dementia. Neuroimage 39, 1027–1033 (2008).

    Article  PubMed  Google Scholar 

  97. Alves, G. et al. Cerebrospinal fluid amyloid-β and phenotypic heterogeneity in de novo Parkinson's disease. J. Neurol. Neurosurg. Psychiatry http://dx.doi.org/10.1136/jnnp-2012-303808.

  98. Jellinger, K. A. CSF biomarkers in different phenotypes of Parkinson disease. J. Neural Transm. 119, 455–456 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Maetzler, W. et al. Neprilysin activity in cerebrospinal fluid is associated with dementia and amyloid-β42 levels in Lewy body disease. J. Alzheimers Dis. 22, 933–938 (2010).

    Article  PubMed  Google Scholar 

  100. Wang, Y. et al. Complement 3 and factor H in human cerebrospinal fluid in Parkinson's disease, Alzheimer's disease, and multiple-system atrophy. Am. J. Pathol. 178, 1509–1516 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mizushima, N. Autophagy: process and function. Genes Dev. 21, 2861–2873 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Vogiatzi, T., Xilouri, M., Vekrellis, K. & Stefanis, L. Wild type α-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J. Biol. Chem. 283, 23542–23556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Anglade, P. et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol. 12, 25–31 (1997).

    CAS  PubMed  Google Scholar 

  105. Chen, Y., McMillan-Ward, E., Kong, J., Israels, S. J. & Gibson, S. B. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J. Cell Sci. 120, 4155–4166 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Dagda, R. K., Zhu, J., Kulich, S. M. & Chu, C. T. Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease. Autophagy 4, 770–782 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Zhu, J.-H. et al. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am. J. Pathol. 170, 75–86 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cataldo, A. M., Barnett, J. L., Pieroni, C. & Nixon, R. A. Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer's disease: neuropathologic evidence for a mechanism of increased β-amyloidogenesis. J. Neurosci. 17, 6142–6151 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Barrachina, M., Maes, T., Buesa, C. & Ferrer, I. Lysosome-associated membrane protein 1 (LAMP-1) in Alzheimer's disease. Neuropathol. Appl. Neurobiol. 32, 505–516 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Neudorfer, O. et al. Occurrence of Parkinson's syndrome in type I Gaucher disease. QJM 89, 691–694 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Bultron, G. et al. The risk of Parkinson's disease in type 1 Gaucher disease. J. Inherit. Metab. Dis. 33, 167–173 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Cherin, P. et al. The neurological manifestations of Gaucher disease type 1: the French Observatoire on Gaucher disease (FROG). J. Inherit. Metab. Dis. 33, 331–338 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Grabowski, G. A. Phenotype, diagnosis, and treatment of Gaucher's disease. Lancet 372, 1263–1271 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Aharon-Peretz, J., Badarny, S., Rosenbaum, H. & Gershoni-Baruch, R. Mutations in the glucocerebrosidase gene and Parkinson disease: phenotype-genotype correlation. Neurology 65, 1460–1461 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. De Marco, E. V. et al. Glucocerebrosidase gene mutations are associated with Parkinson's disease in southern Italy. Mov. Disord. 23, 460–463 (2008).

    Article  PubMed  Google Scholar 

  116. Spitz, M., Rozenberg, R., Pereira Lda, V. & Reis Barbosa, E. Association between Parkinson's disease and glucocerebrosidase mutations in Brazil. Parkinsonism Relat. Disord. 14, 58–62 (2008).

    Article  PubMed  Google Scholar 

  117. Sun, Q. Y. et al. Glucocerebrosidase gene L444P mutation is a risk factor for Parkinson's disease in Chinese population. Mov. Disord. 25, 1005–11 (2010).

    Article  PubMed  Google Scholar 

  118. Clark, L. N. et al. Pilot association study of the β-glucocerebrosidase N370S allele and Parkinson's disease in subjects of Jewish ethnicity. Mov. Disord. 20, 100–103 (2005).

    Article  PubMed  Google Scholar 

  119. Roze, E., Navarro, S., Cornu, P., Welter, M. L. & Vidailhet, M. Deep brain stimulation of the globus pallidus for generalized dystonia in GM1 Type 3 gangliosidosis: technical case report. Neurosurgery 59, E1340 (2006).

    Article  PubMed  Google Scholar 

  120. Wu, G. et al. Decreased activities of lysosomal acid alpha-D-galactosidase A in the leukocytes of sporadic Parkinson's disease. J. Neurol. Sci. 271, 168–173 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Wu, G. et al. Decreased expression of lysosomal alpha-galactosidase A gene in sporadic Parkinson's disease. Neurochem. Res. 36, 1939–1944 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Mazzulli, J. R. et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146, 37–52 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Balducci, C. et al. Lysosomal hydrolases in cerebrospinal fluid from subjects with Parkinson's disease. Mov. Disord. 22, 1481–1484 (2007).

    Article  PubMed  Google Scholar 

  124. Parnetti, L. et al. Cerebrospinal fluid β-glucocerebrosidase activity is reduced in dementia with Lewy Bodies. Neurobiol. Dis. 34, 484–486 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Mollenhauer, B. & Zhang, J. Biochemical premotor biomarkers for Parkinson's disease. Mov. Disord. 27, 644–650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Parkinson Progression Marker Initiative. The Parkinson Progression Marker Initiative (PPMI). Prog. Neurobiol. 95, 629–635 (2011).

  127. Lehnert, S. et al. iTRAQ and multiple reaction monitoring as proteomic tools for biomarker search in cerebrospinal fluid of patients with Parkinson's disease dementia. Exp. Neurol. 234, 499–505 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Picotti, P. & Aebersold, R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat. Methods 9, 555–566 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Lee, H. J., Khoshaghideh, F., Patel, S. & Lee, S. J. Clearance of α-synuclein oligomeric intermediates via the lysosomal degradation pathway. J. Neurosci. 24, 1888–1896 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P. Calabresi receives grant support from Ricerca Corrente IRCCS and Ricerca Finalizzata IRCCS (European Community Grant REPLACES). O. El-Agnaf and L. Parnetti have been supported by, and E. Persichetti receives a salary from, the Michael J. Fox Foundation for Parkinson's Disease. D. Chiasserini is supported by the European 7th framework project MEFOPA (Mendelian Forms of Parkinson's disease; EU grant 241791).

Author information

Authors and Affiliations

Authors

Contributions

L. Parnetti and A. Castrioto researched data for and wrote the article. L. Parnetti, A. Castrioto, D. Chiasserini, E. Persichetti, O. El-Agnaf and P. Calabresi made substantial contributions to discussion of the article content. L. Parnetti, D. Chiasserini, E. Persichetti, N. Tambasco, O. El-Agnaf and P. Calabresi contributed to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Lucilla Parnetti.

Ethics declarations

Competing interests

A. Castrioto has received travel meeting reimbursement from Novartis. P. Calabresi has received research support from Bayer Schering, Biogen, Boehringer Ingelheim, Lundbeck, Sanofi-Aventis, Sigma-Tau. P. Calabresi, L. Parnetti and O. El-Agnaf have submitted a patent application (UK 1011420.5) for a method for Parkinson disease diagnosis. The other authors declare no competing interests

Supplementary information

Supplementary Table 1

Comparison of two recent studies on use of CSF measurement of α-syn and tau to discriminate PD from controls and other neurodegenerative disorders (DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parnetti, L., Castrioto, A., Chiasserini, D. et al. Cerebrospinal fluid biomarkers in Parkinson disease. Nat Rev Neurol 9, 131–140 (2013). https://doi.org/10.1038/nrneurol.2013.10

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.10

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing