Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of epigenetics in renal ageing

Key Points

  • The incidence of deaths owing to renal dysfunction is increasing globally in parallel with the ageing population

  • The epigenetic landscape of ageing is mediated by dynamic changes in the methylome and in chromatin structure, along with coordinated regulation of a complex range of molecular processes by noncoding RNAs in response to environmental changes

  • A mechanistic link is emerging between the epigenetic landscape of ageing and renal dysfunction based on regulation of ageing processes that are common across taxa

  • Epigenetic regulation of biological ageing in the kidney is influenced directly by nutrition, inflammation, the gut microbiome, psychosocial factors and lifestyle factors

  • Models of progeria provide important hypothesis-generating insights for future therapies designed to modify the epigenetic landscape in ageing and disease

  • Epigenetic interventions could potentially improve renal health, but caution is warranted given the potential for intergenerational and transgenerational effects

Abstract

An ability to separate natural ageing processes from processes specific to morbidities is required to understand the heterogeneity of age-related organ dysfunction. Mechanistic insight into how epigenetic factors regulate ageing throughout the life course, linked to a decline in renal function with ageing, is already proving to be of value in the analyses of clinical and epidemiological cohorts. Noncoding RNAs provide epigenetic regulatory circuits within the kidney, which reciprocally interact with DNA methylation processes, histone modification and chromatin. These interactions have been demonstrated to reflect the biological age and function of renal allografts. Epigenetic factors control gene expression and activity in response to environmental perturbations. They also have roles in highly conserved signalling pathways that modulate ageing, including the mTOR and insulin/insulin-like growth factor signalling pathways, and regulation of sirtuin activity. Nutrition, the gut microbiota, inflammation and environmental factors, including psychosocial and lifestyle stresses, provide potential mechanistic links between the epigenetic landscape of ageing and renal dysfunction. Approaches to modify the renal epigenome via nutritional intervention, targeting the methylome or targeting chromatin seem eminently feasible, although caution is merited owing to the potential for intergenerational and transgenerational effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The epigenetic landscape mediates the interplay between stressors and renal dysfunction.
Figure 2: Environmental factors and epigenomic alterations.
Figure 3: Ageing and epigenomic changes in the kidney.

Similar content being viewed by others

References

  1. Kooman, J. P., Kotanko, P., Schols, A. M. W. J., Shiels, P. G. & Stenvinkel, P. Chronic kidney disease and premature ageing. Nat. Rev. Nephrol. 10, 732–742 (2014). Comprehensive discussion of accelerated ageing in CKD and its associated morbidities.

    Article  CAS  PubMed  Google Scholar 

  2. Riera, C. E. & Dillin, A. Can aging be 'drugged'? Nat. Med. 21, 1400–1405 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. United Nations. World Population Ageing 2015 (United Nations, 2015).

  4. Christopher, P. & Murray, J. L. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1603–1658 (2016).

    Article  Google Scholar 

  5. McEwen, B. S. & Stellar, E. Stress and the Individual. Arch. Intern. Med. 153, 2093–2101 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Picard, M., Juster, R.-P. & McEwen, B. S. Mitochondrial allostatic load puts the 'gluc' back in glucocorticoids. Nat. Rev. Endocrinol. 10, 303–310 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Rubin, L. P. Maternal and pediatric health and disease: integrating biopsychosocial models and epigenetics. Pediatr. Res. 79, 127–135 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Velupillai, Y. N. et al. Psychological, social and biological determinants of ill health (pSoBid): study protocol of a population-based study. BMC Public Health 8, 126 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lara, J. et al. A proposed panel of biomarkers of healthy ageing. BMC Med. 13, 222 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Levey, A. S., Inker, L. A. & Coresh, J. Chronic kidney disease in older people. JAMA 314, 557–558 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. McGlynn, L. M. et al. Cellular senescence in pretransplant renal biopsies predicts postoperative organ function. Aging Cell 8, 45–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Schmitt, R., Susnik, N. & Melk, A. Molecular aspects of renal senescence. Curr. Opin. Organ Transplant. 20, 412–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Ramírez, R. et al. Stress-induced premature senescence in mononuclear cells from patients on long-term hemodialysis. Am. J. Kidney Dis. 45, 353–359 (2005).

    Article  PubMed  Google Scholar 

  14. Stengel, B., Tarver-Carr, M. E., Powe, N. R., Eberhardt, M. S. & Brancati, F. L. Lifestyle factors, obesity and the risk of chronic kidney disease. Epidemiology 14, 479–487 (2003).

    PubMed  Google Scholar 

  15. Romani, M., Pistillo, M. P. & Banelli, B. Environmental epigenetics: crossroad between public health, lifestyle, and cancer prevention. Biomed Res. Int. 2015, 587983 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sturmlechner, I., Durik, M., Sieben, C. J., Baker, D. J. & van Deursen, J. M. Cellular senescence in renal ageing and disease. Nat. Rev. Nephrol. 13, 77–89 (2016). Detailed discussion of the cellular and molecular biology of senescence and its impact on age-related renal disease.

    Article  PubMed  CAS  Google Scholar 

  17. Stenvinkel, P. & Larsson, T. E. Chronic kidney disease: a clinical model of premature aging. Am. J. Kidney Dis. 62, 339–351 (2013).

    Article  PubMed  Google Scholar 

  18. Shanahan, C. M. Mechanisms of vascular calcification in CKD — evidence for premature ageing? Nat. Rev. Nephrol. 9, 661–670 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Field, A. E. & Adams, P. D. Targeting chromatin aging — the epigenetic impact of longevity-associated interventions. Exp. Gerontol. http://dx.doi.org/10.1016/j.exger.2016.12.010 (2016).

  20. Robinson, M. W. et al. Non cell autonomous upregulation of CDKN2 transcription linked to progression of chronic hepatitis C disease. Aging Cell 12, 1141–1143 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Panagiotou, N., Wayne Davies, R., Selman, C. & Shiels, P. G. Microvesicles as vehicles for tissue regeneration: changing of the guards. Curr. Pathobiol. Rep. 4, 181–187 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hamed, S., Brenner, B. & Roguin, A. Nitric oxide: a key factor behind the dysfunctionality of endothelial progenitor cells in diabetes mellitus type-2. Cardiovasc. Res. 91, 9–15 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Hofer, A. C. et al. Shared phenotypes among segmental progeroid syndromes suggest underlying pathways of aging. J. Gerontol. A Biol. Sci. Med. Sci. 60, 10–20 (2005).

    Article  PubMed  Google Scholar 

  24. Baker, G. T. & Sprott, R. L. Biomarkers of aging. Exp. Gerontol. 23, 223–239 (1988).

    Article  PubMed  Google Scholar 

  25. Der, G. et al. Is telomere length a biomarker for aging: cross-sectional evidence from the west of Scotland? PLoS ONE 7, e45166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gardner, M. et al. Gender and telomere length: systematic review and meta-analysis. Exp. Gerontol. 51, 15–27 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Gardner, M. P. et al. Telomere length and physical performance at older ages: an individual participant meta-analysis. PLoS ONE 8, e69526 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cooper, R. et al. Objective measures of physical capability and subsequent health: a systematic review. Age Ageing 40, 14–23 (2011). Article describing a holistic approach to understanding physical and physiological aspects of healthspan.

    Article  PubMed  Google Scholar 

  29. Mather, K. A., Jorm, A. F., Parslow, R. A. & Christensen, H. Is telomere length a biomarker of aging? A review. J. Gerontol. A Biol. Sci. Med. Sci. 66A, 202–213 (2011).

    Article  CAS  Google Scholar 

  30. Koppelstaetter, C. et al. Markers of cellular senescence in zero hour biopsies predict outcome in renal transplantation. Aging Cell 7, 491–497 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Gingell-Littlejohn, M. et al. Pre-transplant CDKN2A expression in kidney biopsies predicts renal function and is a future component of donor scoring criteria. PLoS ONE 8, e68133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McGuinness, D. et al. Identification of molecular markers of delayed graft function based on the regulation of biological ageing. PLoS ONE 11, e0146378 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. López- Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013). Seminal paper describing the biological features that are associated with ageing.

    Article  CAS  Google Scholar 

  34. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013). Demonstration of the power of an epigenetic clock to provide a biological age for cells, tissues and organs based on methylation profiles at a range of genomic loci.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shah, P. P. et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev. 27, 1787–1799 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adams, P. D. Remodeling chromatin for senescence. Aging Cell 6, 425–427 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Krauss-Etschmann, S., Meyer, K. F., Dehmel, S. & Hylkema, M. N. Inter- and transgenerational epigenetic inheritance: evidence in asthma and COPD? Clin. Epigenetics 7, 53 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sen, P., Shah, P. P., Nativio, R. & Berger, S. L. Epigenetic mechanisms of longevity and aging. Cell 166, 822–839 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zampieri, M. et al. Reconfiguration of DNA methylation in aging. Mech. Ageing Dev. 151, 60–70 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    CAS  PubMed  Google Scholar 

  41. Horvath, S. Erratum to: DNA methylation age of human tissues and cell types. Genome Biol. 16, 96 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Marioni, R. E. et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 16, 25 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Christiansen, L. et al. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 15, 149–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Perna, L. et al. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin. Epigenetics 8, 64 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Horvath, S. et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 17, 171 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Quach, A. et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY) 9, 419–446 (2017).

    Article  CAS  Google Scholar 

  47. Mawlood, K., Dennany, L., Watson, N., Dempster, J. & Benjamin, S. Quantification of global mitochondrial DNA methylation levels and inverse correlation with age at two CpG sites. Aging (Albany NY) 8, 636–641 (2016).

    Article  CAS  Google Scholar 

  48. Beerman, I. et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12, 413–425 (2013).

    CAS  PubMed  Google Scholar 

  49. Beerman, I. & Rossi, D. J. Epigenetic control of stem cell potential during homeostasis, aging, and disease. Cell Stem Cell 16, 613–625 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ko, Y.-A. & Susztak, K. Epigenomics: the science of no-longer-junk DNA. Why study it in chronic kidney disease? Semin. Nephrol. 33, 354–362 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Hershkovitz, D., Burbea, Z., Skorecki, K. & Brenner, B. M. Fetal programming of adult kidney disease: cellular and molecular mechanisms. Clin. J. Am. Soc. Nephrol. 2, 334–342 (2007).

    Article  PubMed  Google Scholar 

  52. Nelson, R. G., Morgenstern, H. & Bennett, P. H. Birth weight and renal disease in Pima Indians with type 2 diabetes mellitus. Am. J. Epidemiol. 148, 650–656 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Bechtel, W. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544–550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reddy, M. A. & Natarajan, R. Epigenetics in diabetic kidney disease. J. Am. Soc. Nephrol. 22, 2182–2185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, Z. et al. Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort. Proc. Natl Acad. Sci. USA 113, E3002–E3011 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bartholomew, B. Regulating the chromatin landscape: structural and mechanistic perspectives. Annu. Rev. Biochem. 83, 671–696 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Berger, S. L. & Sassone-Corsi, P. Metabolic signaling to chromatin. Cold Spring Harb. Perspect. Biol. 8, a019463 (2016). Article describing how the epigentic landscape regulates metabolism in response to environmental changes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Brassard, J. A., Fekete, N., Garnier, A. & Hoesli, C. A. Hutchinson-Gilford progeria syndrome as a model for vascular aging. Biogerontology 17, 129–145 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Arancio, W., Pizzolanti, G., Genovese, S. I., Pitrone, M. & Giordano, C. Epigenetic involvement in Hutchinson-Gilford progeria syndrome: a mini-review. Gerontology 60, 197–203 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, W. et al. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348, 1160–1163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Montes, M. & Lund, A. H. Emerging roles of lncRNAs in senescence. FEBS J. 283, 2414–2426 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Montes, M. et al. The lncRNA MIR31HG regulates p16(INK4A) expression to modulate senescence. Nat. Commun. 6, 6967 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Grammatikakis, I., Panda, A. C., Abdelmohsen, K. & Gorospe, M. Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging. Aging (Albany NY) 6, 992–1009 (2014).

    Article  Google Scholar 

  64. Pasquinelli, A. E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 13, 271–282 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Degirmenci, U. & Lei, S. Role of lncRNAs in cellular aging. Front. Endocrinol. (Lausanne) 7, 151 (2016).

    Article  Google Scholar 

  66. Lorenzen, J. M. & Thum, T. Long noncoding RNAs in kidney and cardiovascular diseases. Nat. Rev. Nephrol. 12, 360–373 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Monnier, P. et al. H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc. Natl Acad. Sci. USA 110, 20693–20698 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Venkatraman, A. et al. Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 500, 345–349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fuster, J. J. et al. Clonal hematopoiesis associated with Tet2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Long, J. et al. Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy. J. Clin. Invest. 126, 4205–4218 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Cunnington, M. S., Koref, M. S., Mayosi, B. M., Burn, J. & Keavney, B. Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet. 6, e1000899 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Yap, K. L. et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by Polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 38, 662–674 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kotake, Y. et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene. Oncogene 30, 1956–1962 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Tsai, M.-C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Grillari, J. & Grillari-Voglauer, R. Novel modulators of senescence, aging, and longevity: small non-coding RNAs enter the stage. Exp. Gerontol. 45, 302–311 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Inui, M., Martello, G. & Piccolo, S. MicroRNA control of signal transduction. Nat. Rev. Mol. Cell Biol. 11, 252–263 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Friedman, R. C., Farh, K. K. H., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Londin, E. et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc. Natl Acad. Sci. USA 112, E1106–E1115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Loher, P., Londin, E. R. & Rigoutsos, I. IsomiR expression profiles in human lymphoblastoid cell lines exhibit population and gender dependencies. Oncotarget 5, 8790–8802 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fichtlscherer, S., Zeiher, A. M. & Dimmeler, S. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler. Thromb. Vasc. Biol. 31, 2383–2390 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Harvey, S. J. et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J. Am. Soc. Nephrol. 19, 2150–2158 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhdanova, O. et al. The inducible deletion of Drosha and microRNAs in mature podocytes results in a collapsing glomerulopathy. Kidney Int. 80, 719–730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wing, M. R., Ramezani, A., Gill, H. S., Devaney, J. M. & Raj, D. S. Epigenetics of progression of chronic kidney disease: fact or fantasy? Semin. Nephrol. 33, 363–374 (2013).

    CAS  PubMed  Google Scholar 

  85. Ferenbach, D. A. & Bonventre, J. V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol. 11, 264–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shiels, P. G. & Davies, R. W. in Molecular Biology of the Neuron (eds Morris, B. & Davies, R. W.) 439–468 (Oxford Univ. Press, 2004). First description of the mitochondrion/telomere nucleoprotein complex/ribosome hypothesis and of how cellular redox biology is linked to the regulation of telomeres and protein biosynthesis.

    Book  Google Scholar 

  87. McGuinness, D., McCaul, J. A. & Shiels, P. G. Sirtuins, bioageing, and cancer. J. Aging Res. 2011, 235754 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Selman, C. et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326, 140–144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Johnson, S. C., Rabinovitch, P. S. & Kaeberlein, M. mTOR is a key modulator of ageing and age-related disease. Nature 493, 338–345 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–298 (2003). Seminal paper on the molecular cause of Hutchinson–Gilford progeria syndrome.

    Article  CAS  PubMed  Google Scholar 

  91. De Sandre-Giovannoli, A. Lamin A truncation in Hutchinson-Gilford progeria. Science 300, 2055–2055 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Burtner, C. R. & Kennedy, B. K. Progeria syndromes and ageing: what is the connection? Nat. Rev. Mol. Cell Biol. 11, 567–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Goldman, R. D. et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 101, 8963–8968 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shumaker, D. K. et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc. Natl Acad. Sci. USA 103, 8703–8708 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. McCord, R. P. et al. Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res. 23, 260–269 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McClintock, D. et al. The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. PLoS ONE 2, e1269 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Olive, M. et al. Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. Arterioscler. Thromb. Vasc. Biol. 30, 2301–2309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cao, K. et al. Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. J. Clin. Invest. 121, 2833–2844 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Carrero, J. J. et al. Telomere attrition is associated with inflammation, low fetuin-A levels and high mortality in prevalent haemodialysis patients. J. Intern. Med. 263, 302–312 (2008). First-in-man description of accelerated ageing in renal disease associated with inflammation and telomere attrition.

    Article  CAS  PubMed  Google Scholar 

  100. McKenna, T., Sola Carvajal, A. & Eriksson, M. Skin disease in laminopathy-associated premature aging. J. Invest. Dermatol. 135, 2577–2583 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Osorio, F. G. et al. Nuclear lamina defects cause ATM-dependent NF- B activation and link accelerated aging to a systemic inflammatory response. Genes Dev. 26, 2311–2324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. McKenna, T. et al. Embryonic expression of the common progeroid lamin A splice mutation arrests postnatal skin development. Aging Cell 13, 292–302 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kuro-o, M. Klotho in health and disease. Curr. Opin. Nephrol. Hypertens. 21, 362–368 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Isakova, T. et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA 305, 2432–2439 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Faul, C. et al. FGF23 induces left ventricular hypertrophy. J. Clin. Invest. 121, 4393–4408 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Scialla, J. J. et al. Fibroblast growth factor-23 and cardiovascular events in CKD. J. Am. Soc. Nephrol. 25, 349–360 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Han, X. et al. Conditional deletion of Fgfr1 in the proximal and distal tubule identifies distinct roles in phosphate and calcium transport. PLoS ONE 11, e0147845 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Di Bona, D., Accardi, G., Virruso, C., Candore, G. & Caruso, C. Association of Klotho polymorphisms with healthy aging: a systematic review and meta-analysis. Rejuvenation Res. 17, 212–216 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Buendía, P. et al. Klotho prevents NFκB translocation and protects endothelial cell from senescence induced by uremia. J. Gerontol. A Biol. Sci. Med. Sci. 70, 1198–1209 (2015).

    Article  PubMed  CAS  Google Scholar 

  111. Sun, C.-Y., Chang, S.-C. & Wu, M.-S. Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int. 81, 640–650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Young, G.-H. & Wu, V.-C. KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 81, 611–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Himmelfarb, J., Stenvinkel, P., Ikizler, T. A. & Hakim, R. M. Perspectives in renal medicine: the elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 62, 1524–1538 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69, S4–S9 (2014). Primary description of inflammageing in health and disease.

    Article  PubMed  Google Scholar 

  115. Stenvinkel, P. et al. Impact of inflammation on epigenetic DNA methylation — a novel risk factor for cardiovascular disease? J. Intern. Med. 261, 488–499 (2007). Demonstration of the potential for epigenetic changes to affect renal disease.

    Article  CAS  PubMed  Google Scholar 

  116. Thaler, R. et al. Homocysteine suppresses the expression of the collagen cross-linker lysyl oxidase involving IL-6, Fli1, and epigenetic DNA methylation. J. Biol. Chem. 286, 5578–5588 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Braconi, C., Huang, N. & Patel, T. Microrna-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 51, 881–890 (2010).

    CAS  PubMed  Google Scholar 

  118. Hodge, D. R. et al. IL-6 enhances the nuclear translocation of DNA cytosine-5-methyltransferase 1 (DNMT1) via phosphorylation of the nuclear localization sequence by the AKT kinase. Cancer Genomics Proteomics 4, 387–398 (2007).

    CAS  PubMed  Google Scholar 

  119. Appling, D. R. Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. FASEB J. 5, 2645–2651 (1991).

    Article  CAS  PubMed  Google Scholar 

  120. Wierzbicki, A. S. Homocysteine and cardiovascular disease: a review of the evidence. Diab. Vasc. Dis. Res. 4, 143–150 (2007).

    Article  PubMed  Google Scholar 

  121. Yi, P. et al. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J. Biol. Chem. 275, 29318–29323 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Luttropp, K. et al. Increased telomere attrition after renal transplantation — impact of antimetabolite therapy. Transplant. Direct 2, e116 (2016). First report of the differential effects of immunosuppression on biological ageing in renal transplantation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tchkonia, T., Zhu, Y., Van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013). Key coverage of the link between biological ageing, cellular senescence and inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Khalil, H. et al. Aging is associated with hypermethylation of autophagy genes in macrophages. Epigenetics 11, 381–388 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Malaquin, N., Martinez, A. & Rodier, F. Keeping the senescence secretome under control: molecular reins on the senescence-associated secretory phenotype. Exp. Gerontol. 82, 39–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Salminen, A., Kaarniranta, K., Hiltunen, M. & Kauppinen, A. Histone demethylase Jumonji D3 (JMJD3/KDM6B) at the nexus of epigenetic regulation of inflammation and the aging process. J. Mol. Med. 3, 1035–1043 (2014).

    Article  CAS  Google Scholar 

  127. Heinemann, B. et al. Inhibition of demethylases by GSK-J1/J4. Nature 514, E1–E2 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Tomayko, E. J., Cachia, A. J., Chung, H. R. & Wilund, K. R. Resveratrol supplementation reduces aortic atherosclerosis and calcification and attenuates loss of aerobic capacity in a mouse model of uremia. J. Med. Food 17, 278–283 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Deans, K. A. et al. Differences in atherosclerosis according to area level socioeconomic deprivation: cross sectional, population based study. BMJ 339, b4170 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Packard, C. J. et al. Early life socioeconomic adversity is associated in adult life with chronic inflammation, carotid atherosclerosis, poorer lung function and decreased cognitive performance: a cross-sectional, population-based study. BMC Public Health 11, 42 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Gluckman, P. D. & Hanson, M. A. Developmental Origins of Health and Disease (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  132. Geronimus, A. T., Hicken, M., Keene, D. & Bound, J. 'Weathering' and age patterns of allostatic load scores among blacks and whites in the United States. Am. J. Public Health 96, 826–833 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Crimmins, E. M., Kim, J. K., Alley, D. E., Karlamangla, A. & Seeman, T. Hispanic paradox in biological risk profiles. Am. J. Public Health 97, 1305–1310 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Shiels, P. G. & Ritzau-Reid, K. Biological ageing, inflammation and nutrition: how might they impact on systemic sclerosis? Curr. Aging Sci. 8, 123–130 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Parsa, A. et al. Genome-wide association of CKD progression: the chronic renal insufficiency cohort study. J. Am. Soc. Nephrol. 28, 923–934 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Ridout, K. K. et al. Early life adversity and telomere length: a meta-analysis. Mol. Psychiatry http://dx.doi.org/10.1038/mp.2017.26 (2017).

  137. Blaze, J. et al. Intrauterine exposure to maternal stress alters Bdnf IV DNA methylation and telomere length in the brain of adult rat offspring. Int. J. Dev. Neurosci. http://dx.doi.org/10.1016/j.ijdevneu.2017.03.007 (2017).

  138. Roseboom, T. J. et al. Coronary heart disease after prenatal exposure to the Dutch famine, 1944–1945. Heart 84, 595–598 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Painter, R. C. et al. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 115, 1243–1249 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Au, C. P., Raynes-Greenow, C. H., Turner, R. M., Carberry, A. E. & Jeffery, H. Fetal and maternal factors associated with neonatal adiposity as measured by air displacement plethysmography: a large cross-sectional study. Early Hum. Dev. 89, 839–843 (2013).

    Article  PubMed  Google Scholar 

  141. Jiménez- Chillarón, J. C. et al. The role of nutrition on epigenetic modifications and their implications on health. Biochimie 94, 2242–2263 (2012).

    Article  CAS  Google Scholar 

  142. Dominguez-Salas, P. et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat. Commun. 5, 3746 (2014). Seminal paper providing evidence that maternal nutrition impacts DNA methylation processes and health in offspring.

    Article  CAS  PubMed  Google Scholar 

  143. Shiels, P. G. et al. Accelerated telomere attrition is associated with relative household income, diet and inflammation in the pSoBid Cohort. PLoS ONE 6, e22521 (2011). Paper highlighting the effect of poor socioeconomic status on biological ageing and inflammatory burden.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cherkas, L. F. et al. The effects of social status on biological aging as measured by white-blood-cell telomere length. Aging Cell 5, 361–365 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. McClelland, R. et al. Accelerated ageing and renal dysfunction links lower socioeconomic status and dietary phosphate intake. Aging (Albany NY) 8, 1135–1149 (2016). First report of an association between nutritionally acquired hyperphosphataemia and accelerated biological ageing (as evidenced by short telomeres and genomic DNA hypomethylation) diet, and diminished renal function tied to socioeconomic status.

    Article  CAS  Google Scholar 

  146. Tan, X., Xu, X., Zeisberg, M. & Zeisberg, E. M. DNMT1 and HDAC2 cooperate to facilitate aberrant promoter methylation in inorganic phosphate-induced endothelial-mesenchymal transition. PLoS ONE 11, e0147816 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Aron-Wisnewsky, J. & Clément, K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat. Rev. Nephrol. 12, 169–181 (2015).

    Article  PubMed  CAS  Google Scholar 

  148. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tang, W. H. W. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Missailidis, C. et al. Serum trimethylamine-N-oxide is strongly related to renal function and predicts outcome in chronic kidney disease. PLoS ONE 11, e0141738 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. McGuinness, D. et al. Socio-economic status is associated with epigenetic differences in the pSoBid cohort. Int. J. Epidemiol. 41, 151–160 (2012). First report of epigenetic differences (genomic methylation content) linked to socioeconomic status and associated with inflammation in an epidemiological cohort.

    Article  PubMed  Google Scholar 

  152. Vaziri, N. D. et al. Disintegration of colonic epithelial tight junction in uremia: a likely cause of CKD-associated inflammation. Nephrol. Dial. Transplant. 27, 2686–2693 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Lau, W. L. et al. Role of Nrf2 dysfunction in uremia-associated intestinal inflammation and epithelial barrier disruption. Dig. Dis. Sci. 60, 1215–1222 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. McIntyre, C. W. et al. Circulating endotoxemia: a novel factor in systemic inflammation and cardiovascular disease in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 133–141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Simpson, R. J. et al. Senescent phenotypes and telomere lengths of peripheral blood T-cells mobilized by acute exercise in humans. Exerc. Immunol. Rev. 16, 40–55 (2010).

    PubMed  Google Scholar 

  156. Epel, E. S. et al. Accelerated telomere shortening in response to life stress. Proc. Natl Acad. Sci. USA 101, 17312–17315 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Blackburn, E. H., Epel, E. S. & Lin, J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350, 1193–1198 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Fontana, L. & Partridge, L. Promoting health and longevity through diet: from model organisms to humans. Cell 161, 106–118 (2015). Key review of the impact of diet on ageing processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Imai, S. & Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24, 464–471 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mitchell, S. J. et al. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 6, 836–843 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mercken, E. M. et al. SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell 13, 787–796 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tasdemir, N. et al. BRD4 connects enhancer remodeling to senescence immune surveillance. Cancer Discov. 6, 612–629 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kim, C. H. et al. Short-term calorie restriction ameliorates genomewide, age-related alterations in DNA methylation. Aging Cell 15, 1074–1081 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Woroniecki, R., Gaikwad, A. B. & Susztak, K. Fetal environment, epigenetics, and pediatric renal disease. Pediatr. Nephrol. 26, 705–711 (2011).

    Article  PubMed  Google Scholar 

  165. Chen, J. et al. Elevated klotho promoter methylation is associated with severity of chronic kidney disease. PLoS ONE 8, e79856 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hostetter, T. H., Rennke, H. G. & Brenner, B. M. Compensatory renal hemodynamic injury: a final common pathway of residual nephron destruction. Am. J. Kidney Dis. 1, 310–314 (1982).

    Article  CAS  PubMed  Google Scholar 

  167. Xu, M., Tchkonia, T. & Kirkland, J. L. Perspective: targeting the JAK/STAT pathway to fight age-related dysfunction. Pharmacol. Res. 111, 152–154 (2016). Important discussion of future therapeutic strategies for age-related morbidities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mertens, J. et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17, 705–718 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Anway, M. D. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466–1469 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Aragon, A. C., Kopf, P. G., Campen, M. J., Huwe, J. K. & Walker, M. K. In utero and lactational 2,3,7,8- tetrachlorodibenzo-p-dioxin exposure: effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology. Toxicol. Sci. 101, 321–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Kataria, A., Trasande, L. & Trachtman, H. The effects of environmental chemicals on renal function. Nat. Rev. Nephrol. 11, 610–625 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.S. has received research funding from the Swedish Medical Research Council. D.McG. has received funding from Darlinda's Charity for Renal Research The authors thank Ognian Neytchev (University of Glasgow) for assistance in formatting the references and Colin Selman (University of Glasgow) for critical reading of the manuscript prior to submission.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, made a substantial contribution to discussion of the content, wrote the article and reviewed and, or edited the manuscript before submission.

Corresponding author

Correspondence to Paul G. Shiels.

Ethics declarations

Competing interests

P.G.S. has received research funding from GlaxoSmithKline. J.P.K. has received research funding from Fresenius. The other authors declare no competing interests.

PowerPoint slides

Glossary

Diverticula

Cystic cavities that are lined by transitional epithelium and contain urine.

Epigenotype

A stable pattern of gene expression that is not encoded by the genomic sequence of the associated DNA.

Segmental progeroid syndrome

A syndrome in which certain tissues and cell types in the body display an accelerated ageing phenotype.

Epigenetic clock

A biological clock based on the levels of DNA methylation at a number of defined loci that is used to estimate the biological age of a tissue, cell type, organ or individual.

Epigenetic drift

Age-associated divergence of the epigenome owing to stochastic alteration of DNA methylation.

Metabolic memory

An epigenetic effect that results in the persistence of poor metabolic control after an episode of hyperglycaemia despite a return to normal glycaemic control.

Archetypal miRNAs

Reference miRNA sequences listed in miRNA databases.

Imprinted gene

A gene that is expressed in a manner that is epigenetically determined by the sex of the parent who contributed the gene, typically through methylation-based gene silencing.

Methyl-donor nutrient

Dietary methyl groups derived from foods that contain methionine, one-carbon units and choline (or the choline metabolite betaine).

Metastable epialleles

Genomic regions in which DNA methylation is established stochastically during embryogenesis and then maintained stably in differentiated cells and tissues, leading to inter-individual epigenetic variation.

Antagonistic pleiotropy

A genetic effect that controls for at least one trait that is beneficial to and at least one trait that is detrimental to the fitness of the organism.

Segmental ageing

Variability in the age of onset and the rate of development of accelerated ageing characteristics in different tissues and organs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiels, P., McGuinness, D., Eriksson, M. et al. The role of epigenetics in renal ageing. Nat Rev Nephrol 13, 471–482 (2017). https://doi.org/10.1038/nrneph.2017.78

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.78

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing