Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

B cells in type 1 diabetes mellitus and diabetic kidney disease

Key Points

  • Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by the destruction of pancreatic β cells

  • An accumulating body of evidence suggests that T1DM is associated with loss of tolerance by autoreactive B cells

  • Although islet antigen-reactive B cells give rise to autoantibody secreting cells, their most important contribution to pathology in T1DM seems to be presentation of self-antigens to T cells

  • Loss of tolerance of islet-reactive B cells is associated with certain genetic polymorphisms

  • B cells contribute to diabetic kidney disease (DKD) through the production of antibodies that lead to the formation and deposition of immune complexes in the kidney

  • In a clinical trial, B cell-depletion therapy showed some efficacy in patients with T1DM; the development of non-cell depleting therapies might benefit patients with T1DM and DKD

Abstract

Type 1 diabetes mellitus (T1DM) is an autoimmune disorder that affects an estimated 30 million people worldwide. It is characterized by the destruction of pancreatic β cells by the immune system, which leads to lifelong dependency on exogenous insulin and imposes an enormous burden on patients and health-care resources. T1DM is also associated with an increased risk of comorbidities, such as cardiovascular disease, retinopathy, and diabetic kidney disease (DKD), further contributing to the burden of this disease. Although T cells are largely considered to be responsible for β-cell destruction in T1DM, increasing evidence points towards a role for B cells in disease pathogenesis. B cell-depletion, for example, delays disease progression in patients with newly diagnosed T1DM. Loss of tolerance of islet antigen-reactive B cells occurs early in disease and numbers of pancreatic CD20+ B cells correlate with β-cell loss. Although the importance of B cells in T1DM is increasingly apparent, exactly how these cells contribute to disease and its comorbidities, such as DKD, is not well understood. Here we discuss the role of B cells in the pathogenesis of T1DM and how these cells are activated during disease development. Finally, we speculate on how B cells might contribute to the development of DKD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of autoreactive B-cell tolerance and dysfunction in type 1 diabetes mellitus.
Figure 2: Potential roles of autoreactive B cells in diabetic kidney disease.

Similar content being viewed by others

References

  1. Jeker, L. T., Bour-Jordan, H. & Bluestone, J. A. Breakdown in peripheral tolerance in type 1 diabetes in mice and humans. Cold Spring Harb. Perspect. Med. 2, a007807 (2012).

    PubMed  PubMed Central  Google Scholar 

  2. Bluestone, J. A., Herold, K. & Eisenbarth, G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464, 1293–1300 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. de Boer, I. H. et al. Long-term renal outcomes of patients with type 1 diabetes mellitus and microalbuminuria: an analysis of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications cohort. Arch. Intern. Med. 171, 412–420 (2011).

    PubMed  PubMed Central  Google Scholar 

  4. Levine, D. Z. Can rodent models of diabetic kidney disease clarify the significance of early hyperfiltration?: recognizing clinical and experimental uncertainties. Clin. Sci. 114, 109–118 (2008).

    CAS  PubMed  Google Scholar 

  5. Bank, N. Mechanisms of diabetic hyperfiltration. Kidney Int. 40, 792–807 (1991).

    CAS  PubMed  Google Scholar 

  6. Ponchiardi, C., Mauer, M. & Najafian, B. Temporal profile of diabetic nephropathy pathologic changes. Curr. Diab. Rep. 13, 592–599 (2013).

    CAS  PubMed  Google Scholar 

  7. Noorchashm, H. et al. I-Ag7-mediated antigen presentation by B lymphocytes is critical in overcoming a checkpoint in T cell tolerance to islet beta cells of nonobese diabetic mice. J. Immunol. 163, 743–750 (1999).

    CAS  PubMed  Google Scholar 

  8. Serreze, D. V. et al. B lymphocytes are critical antigen-presenting cells for the initiation of T cell-mediated autoimmune diabetes in nonobese diabetic mice. J. Immunol. 161, 3912–3918 (1998).

    CAS  PubMed  Google Scholar 

  9. Silveira, P. A. et al. The preferential ability of B lymphocytes to act as diabetogenic APC in NOD mice depends on expression of self-antigen-specific immunoglobulin receptors. Eur. J. Immunol. 32, 3657–3666 (2002).

    CAS  PubMed  Google Scholar 

  10. Orban, T. et al. Pancreatic islet autoantibodies as predictors of type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care 32, 2269–2274 (2009).

    PubMed  PubMed Central  Google Scholar 

  11. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    CAS  PubMed  Google Scholar 

  12. Halverson, R., Torres, R. M. & Pelanda, R. Receptor editing is the main mechanism of B cell tolerance toward membrane antigens. Nat. Immunol. 5, 645–650 (2004).

    CAS  PubMed  Google Scholar 

  13. Meffre, E. & Wardemann, H. B-Cell tolerance checkpoints in health and autoimmunity. Curr. Opin. Immunol. 20, 632–638 (2008).

    CAS  PubMed  Google Scholar 

  14. Casellas, R. et al. Contribution of receptor editing to the antibody repertoire. Science 291, 1541–1544 (2001).

    CAS  PubMed  Google Scholar 

  15. Cambier, J. C., Gauld, S. B., Merrell, K. T. & Vilen, B. J. B-Cell anergy: from transgenic models to naturally occurring anergic B cells? Nat. Rev. Immunol. 7, 633–643 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Duty, J. A. et al. Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors. J. Exp. Med. 206, 139–151 (2009).

    PubMed  PubMed Central  Google Scholar 

  17. Gauld, S. B., Benschop, R. J., Merrell, K. T. & Cambier, J. C. Maintenance of B cell anergy requires constant antigen receptor occupancy and signaling. Nat. Immunol. 6, 1160–1167 (2005).

    CAS  PubMed  Google Scholar 

  18. Gauld, S. B., Merrell, K. T. & Cambier, J. C. Silencing of autoreactive B cells by anergy: a fresh perspective. Curr. Opin. Immunol. 18, 292–297 (2006).

    CAS  PubMed  Google Scholar 

  19. Merrell, K. T. et al. Identification of anergic B cells within a wild-type repertoire. Immunity 25, 953–962 (2006).

    CAS  PubMed  Google Scholar 

  20. O'Neill, S. K. et al. Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity 35, 746–756 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Getahun, A., Beavers, N. A., Larson, S. R., Shlomchik, M. J. & Cambier, J. C. Continuous inhibitory signaling by both SHP-1 and SHIP-1 pathways is required to maintain unresponsiveness of anergic B cells. J. Exp. Med. 213, 751–769 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Getahun, A. et al. Impaired B cell function during viral infections due to PTEN-mediated inhibition of the PI3K pathway. J. Exp. Med. 214, 931–941 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cambier, J. C. Autoimmunity risk alleles: hotspots in B cell regulatory signaling pathways. J. Clin. Invest. 123, 1928–1931 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Akashi, T. et al. Direct evidence for the contribution of B cells to the progression of insulitis and the development of diabetes in non-obese diabetic mice. Int. Immunol. 9, 1159–1164 (1997).

    CAS  PubMed  Google Scholar 

  25. Xiu, Y. et al. B lymphocyte depletion by CD20 monoclonal antibody prevents diabetes in nonobese diabetic mice despite isotype-specific differences in FcγR effector functions. J. Immunol. 180, 2863–2875 (2008).

    CAS  PubMed  Google Scholar 

  26. Hu, C. Y. et al. Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J. Clin. Invest. 117, 3857–3867 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pescovitz, M. D. et al. B-Lymphocyte depletion with rituximab and beta-cell function: two-year results. Diabetes Care 37, 453–459 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pescovitz, M. D. et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N. Engl. J. Med. 361, 2143–2152 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Martin, S. et al. Development of type 1 diabetes despite severe hereditary B-lymphocyte deficiency. N. Engl. J. Med. 345, 1036–1040 (2001).

    CAS  PubMed  Google Scholar 

  30. Jones, J. L. et al. Human autoimmunity after lymphocyte depletion is caused by homeostatic T-cell proliferation. Proc. Natl Acad. Sci. USA 110, 20200–20205 (2013).

    CAS  PubMed  Google Scholar 

  31. Merayo-Chalico, J. et al. Lymphopenia and autoimmunity: a double-edged sword. Hum. Immunol. 77, 921–929 (2016).

    CAS  PubMed  Google Scholar 

  32. Tian, J. et al. Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J. Immunol. 167, 1081–1089 (2001).

    CAS  PubMed  Google Scholar 

  33. Harris, D. P. et al. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat. Immunol. 1, 475–482 (2000).

    CAS  PubMed  Google Scholar 

  34. Vehik, K. et al. Development of autoantibodies in the TrialNet Natural History Study. Diabetes Care 34, 1897–1901 (2011).

    PubMed  PubMed Central  Google Scholar 

  35. Verge, C. F. et al. Combined use of autoantibodies (IA-2 autoantibody, GAD autoantibody, insulin autoantibody, cytoplasmic islet cell antibodies) in type 1 diabetes: Combinatorial Islet Autoantibody Workshop. Diabetes 47, 1857–1866 (1998).

    CAS  PubMed  Google Scholar 

  36. Marino, E., Tan, B., Binge, L., Mackay, C. R. & Grey, S. T. B-Cell cross-presentation of autologous antigen precipitates diabetes. Diabetes 61, 2893–2905 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hulbert, C., Riseili, B., Rojas, M. & Thomas, J. W. B cell specificity contributes to the outcome of diabetes in nonobese diabetic mice. J. Immunol. 167, 5535–5538 (2001).

    CAS  PubMed  Google Scholar 

  38. Delong, T. et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 351, 711–714 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Babon, J. A. et al. Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nat. Med. 22, 1482–1487 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wiles, T. A. et al. An insulin-IAPP hybrid peptide is an endogenous antigen for CD4 T cells in the non-obese diabetic mouse. J. Autoimmun. 78, 11–18 (2017).

    CAS  PubMed  Google Scholar 

  41. Barker, J. M. et al. Prediction of autoantibody positivity and progression to type 1 diabetes: Diabetes Autoimmunity Study in the Young (DAISY). J. Clin. Endocrinol. Metab. 89, 3896–3902 (2004).

    CAS  PubMed  Google Scholar 

  42. Sosenko, J. M. et al. The use of electrochemiluminescence assays to predict autoantibody and glycemic progression toward type 1 diabetes in individuals with single autoantibodies. Diabetes Technol. Ther. 19, 183–187 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Steck, A. K. et al. ECL-IAA and ECL-GADA can identify high-risk single autoantibody-positive relatives in the TrialNet Pathway to Prevention study. Diabetes Technol. Ther. 18, 410–414 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wong, F. S. et al. Investigation of the role of B-cells in type 1 diabetes in the NOD mouse. Diabetes 53, 2581–2587 (2004).

    CAS  PubMed  Google Scholar 

  45. DiLillo, D. J. et al. Maintenance of long-lived plasma cells and serological memory despite mature and memory B cell depletion during CD20 immunotherapy in mice. J. Immunol. 180, 361–371 (2008).

    CAS  PubMed  Google Scholar 

  46. Menard, L. et al. The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. J. Clin. Invest. 121, 3635–3644 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chamberlain, N. et al. Rituximab does not reset defective early B cell tolerance checkpoints. J. Clin. Invest. 126, 282–287 (2016).

    PubMed  Google Scholar 

  48. Panigrahi, A. K. et al. RS rearrangement frequency as a marker of receptor editing in lupus and type 1 diabetes. J. Exp. Med. 205, 2985–2994 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Smith, M. J. et al. Loss of anergic B cells in prediabetic and new-onset type 1 diabetic patients. Diabetes 64, 1703–1712 (2015).

    CAS  PubMed  Google Scholar 

  50. Huang, S. W., Haedt, L. H., Rich, S. & Barbosa, J. Prevalence of antibodies to nucleic acids in insulin-dependent diabetics and their relatives. Diabetes 30, 873–874 (1981).

    CAS  PubMed  Google Scholar 

  51. Triolo, G. et al. Cross-reactivity of anti-ssDNA antibodies with heparan sulfate in patients with type I diabetes mellitus. Diabetes 38, 718–722 (1989).

    CAS  PubMed  Google Scholar 

  52. Willcox, A., Richardson, S. J., Bone, A. J., Foulis, A. K. & Morgan, N. G. Analysis of islet inflammation in human type 1 diabetes. Clin. Exp. Immunol. 155, 173–181 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Leete, P. et al. Differential insulitic profiles determine the extent of β-cell destruction and the age at onset of type 1 diabetes. Diabetes 65, 1362–1369 (2016).

    CAS  PubMed  Google Scholar 

  54. Packard, T. A. et al. B cell receptor affinity for insulin dictates autoantigen acquisition and B cell functionality in autoimmune diabetes. J. Clin. Med. 5, 98 (2016).

    PubMed Central  Google Scholar 

  55. Willcox, A. et al. Germinal centre frequency is decreased in pancreatic lymph nodes from individuals with recent-onset type 1 diabetes. Diabetologia 60, 1294–1303 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. Lambert, A. P. et al. Absolute risk of childhood-onset type 1 diabetes defined by human leukocyte antigen class II genotype: a population-based study in the United Kingdom. J. Clin. Endocrinol. Metab. 89, 4037–4043 (2004).

    CAS  PubMed  Google Scholar 

  57. Erlich, H. et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes 57, 1084–1092 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Concannon, P., Rich, S. S. & Nepom, G. T. Genetics of type 1A diabetes. N. Engl. J. Med. 360, 1646–1654 (2009).

    CAS  PubMed  Google Scholar 

  59. Pugliese, A. et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat. Genet. 15, 293–297 (1997).

    CAS  PubMed  Google Scholar 

  60. Cerosaletti, K. & Buckner, J. H. Protein tyrosine phosphatases and type 1 diabetes: genetic and functional implications of PTPN2 and PTPN22. Rev. Diabet. Stud. 9, 188–200 (2012).

    PubMed  Google Scholar 

  61. Habib, T. et al. Altered B cell homeostasis is associated with type I diabetes and carriers of the PTPN22 allelic variant. J. Immunol. 188, 487–496 (2012).

    CAS  PubMed  Google Scholar 

  62. Dai, X. et al. A disease-associated PTPN22 variant promotes systemic autoimmunity in murine models. J. Clin. Invest. 123, 2024–2036 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Simoncic, P. D., Lee-Loy, A., Barber, D. L., Tremblay, M. L. & McGlade, C. J. The T cell protein tyrosine phosphatase is a negative regulator of Janus family kinases 1 and 3. Curr. Biol. 12, 446–453 (2002).

    CAS  PubMed  Google Scholar 

  64. Wiede, F. et al. T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice. J. Clin. Invest. 121, 4758–4774 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Long, S. A. et al. An autoimmune-associated variant in PTPN2 reveals an impairment of IL-2R signaling in CD4+ T cells. Genes Immun. 12, 116–125 (2011).

    CAS  PubMed  Google Scholar 

  66. Wiede, F., Sacirbegovic, F., Leong, Y. A., Yu, D. & Tiganis, T. PTPN2-deficiency exacerbates T follicular helper cell and B cell responses and promotes the development of autoimmunity. J. Autoimmun. 76, 85–100 (2017).

    CAS  PubMed  Google Scholar 

  67. Xiao, X. et al. Cellular and humoral immune responses in the early stages of diabetic nephropathy in NOD mice. J. Autoimmun. 32, 85–93 (2009).

    CAS  PubMed  Google Scholar 

  68. Zhang, N. et al. Increased CD4+CXCR5+T follicular helper cells in diabetic nephropathy. Autoimmunity 49, 405–413 (2016).

    CAS  PubMed  Google Scholar 

  69. Atchley, D. H., Lopes-Virella, M. F., Zheng, D., Kenny, D. & Virella, G. Oxidized LDL-anti-oxidized LDL immune complexes and diabetic nephropathy. Diabetologia 45, 1562–1571 (2002).

    CAS  PubMed  Google Scholar 

  70. Nicoloff, G., Blazhev, A., Petrova, C. & Christova, P. Circulating immune complexes among diabetic children. Clin. Dev. Immunol. 11, 61–66 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ainsworth, S. K. et al. Diabetic glomerulonephropathy: histopathologic, immunofluorescent, and ultrastructural studies of 16 cases. Hum. Pathol. 13, 470–478 (1982).

    CAS  PubMed  Google Scholar 

  72. Abdelsamie, S. A. et al. Oxidized LDL immune complexes stimulate collagen IV production in mesangial cells via Fc gamma receptors I and III. Clin. Immunol. 139, 258–266 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Imig, J. D. & Ryan, M. J. Immune and inflammatory role in renal disease. Compr. Physiol. 3, 957–976 (2013).

    PubMed  PubMed Central  Google Scholar 

  74. Saad, A. F., Virella, G., Chassereau, C., Boackle, R. J. & Lopes-Virella, M. F. OxLDL immune complexes activate complement and induce cytokine production by MonoMac 6 cells and human macrophages. J. Lipid Res. 47, 1975–1983 (2006).

    CAS  PubMed  Google Scholar 

  75. Vergani, D., Johnston, C., N., B. A. & Barnett, A. H. Low serum C4 concentrations: an inherited predisposition to insulin dependent diabetes? Br. Med. J. 286, 926–928 (1983).

    CAS  Google Scholar 

  76. Barnett, A. H. et al. Low plasma C4 concentrations: association with microangiopathy in insulin dependent diabetes. Br. Med. J. 289, 943–945 (1984).

    CAS  Google Scholar 

  77. Duran-Salgado, M. B. & Rubio-Guerra, A. F. Diabetic nephropathy and inflammation. World J. Diabetes 5, 393–398 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. Agrawal, S. & Gupta, S. TLR1/2, TLR7, and TLR9 signals directly activate human peripheral blood naive and memory B cell subsets to produce cytokines, chemokines, and hematopoietic growth factors. J. Clin. Immunol. 31, 89–98 (2011).

    CAS  PubMed  Google Scholar 

  79. Navarro-Gonzalez, J. F., Mora-Fernandez, C., Muros de Fuentes, M. & Garcia-Perez, J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat. Rev. Nephrol. 7, 327–340 (2011).

    CAS  PubMed  Google Scholar 

  80. Suzuki, Y. et al. Histopathological assessment of renal biopsy specimens of subjects with urine abnormality [Japanese]. Nihon Jinzo Gakkai Shi 37, 284–290 (1995).

    CAS  PubMed  Google Scholar 

  81. Choudhary, N. & Ahlawat, R. S. Interleukin-6 and C-reactive protein in pathogenesis of diabetic nephropathy: new evidence linking inflammation, glycemic control, and microalbuminuria. Iran. J. Kidney Dis. 2, 72–79 (2008).

    PubMed  Google Scholar 

  82. Moriwaki, Y. et al. Elevated levels of interleukin-18 and tumor necrosis factor-alpha in serum of patients with type 2 diabetes mellitus: relationship with diabetic nephropathy. Metabolism 52, 605–608 (2003).

    CAS  PubMed  Google Scholar 

  83. Kalantarinia, K., Awad, A. S. & Siragy, H. M. Urinary and renal interstitial concentrations of TNF-α increase prior to the rise in albuminuria in diabetic rats. Kidney Int. 64, 1208–1213 (2003).

    CAS  PubMed  Google Scholar 

  84. Lund, F. E. Cytokine-producing B lymphocytes-key regulators of immunity. Curr. Opin. Immunol. 20, 332–338 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mysliwska, J. et al. High levels of circulating interleukin-10 in diabetic nephropathy patients. Eur. Cytokine Netw. 16, 117–122 (2005).

    CAS  PubMed  Google Scholar 

  86. Peng, X., Xu, J., Wang, P., Zhou, J. & Guo, H. Interleukin-10-1082A/G polymorphism and diabetic nephropathy: a meta-analysis. Med. Sci. Monit. 21, 890–894 (2015).

    PubMed  PubMed Central  Google Scholar 

  87. Gerondakis, S. & Siebenlist, U. Roles of the NF-κB pathway in lymphocyte development and function. Cold Spring Harb. Perspect. Biol. 2, a000182 (2010).

    PubMed  PubMed Central  Google Scholar 

  88. Fiorina, P. et al. Targeting CD22 reprograms B-cells and reverses autoimmune diabetes. Diabetes 57, 3013–3024 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Marino, E. et al. CD4+CD25+ T-cells control autoimmunity in the absence of B-cells. Diabetes 58, 1568–1577 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zekavat, G. et al. In vivo BLyS/BAFF neutralization ameliorates islet-directed autoimmunity in nonobese diabetic mice. J. Immunol. 181, 8133–8144 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, discussed the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to John C. Cambier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Germinal centre reaction

The anatomical site in which B cells and T cells respond collaboratively to immunogen, leading to B cell proliferation, somatic Ig gene mutation, affinity maturation and immunoglobulin class switch recombination.

Anergy

A mode of B cell tolerance characterized by unresponsiveness to antigenic stimulation, including the inability to become activated, proliferate and secrete antibody.

Diabetogenic T cells

T cells that can cause diabetes, such as insulin-reactive T cells.

Cross-presenting

The process by which antigen presenting cells process and present extracellular antigens to CD8+ T cells.

High-affinity anti-insulin antibodies

Antibodies with an affinity for insulin >10−9 mol/l.

Plasma cells

Terminally differentiated B cells that secrete antibody.

Recombining sequence rearrangements

DNA rearrangements that delete one or both Ig κ genes, leading to expression of Ig λ light chains.

λ-Immunoglobulin light chain-positive B cells

B cells that express λ light chains as a component of their B cell antigen receptor; high levels of these cells is indicative of increased receptor editing.

Insulitis

Inflammation of the pancreas due to infiltration of lymphocytes.

Haplotypes

A set of genes inherited from a single parent.

Antibody-dependent cell-mediated cytotoxicity

The process by which an effector cell of the immune system, such as a natural killer cell, targets a cell for lysis based on the presence of antibodies that are bound to surface antigens on the target cell.

Mixed meal tolerance test

An assay to determine the amount of insulin an individual produces; the individual consumes a drink containing a mixture of protein, fat, and carbohydrates that stimulates the release of insulin from pancreatic β cells; blood is drawn several times over a period of hours and assayed for C-peptide, which reflects endogenous insulin production.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, M., Simmons, K. & Cambier, J. B cells in type 1 diabetes mellitus and diabetic kidney disease. Nat Rev Nephrol 13, 712–720 (2017). https://doi.org/10.1038/nrneph.2017.138

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing