Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging roles of astrocytes in neural circuit development

An Erratum to this article was published on 02 May 2013

This article has been updated

Key Points

  • Establishment of the correct number and type of synapses is essential for the formation of neural circuits and information processing in the brain. Despite the identification of a diverse range of neuronal mechanisms that regulate neural circuit formation, we are still far from fully understanding the processes involved.

  • New evidence from rodent studies has revealed that astrocytes are key participants in neural circuit development. Astrocytes control synapse formation, maturation, function and elimination by a range of newly identified secreted and contact-mediated signals.

  • Similarly, studies have revealed that human astrocytes can control synapse formation, suggesting that this feature is conserved across species. In fact, human astrocytes can induce the formation of a larger number of synapses than can rodent astrocytes. An understanding of the unique characteristics of human astrocytes might provide new insights into the greater capacity of the human brain to learn and adapt.

  • Astrocytes are also increasingly being implicated in the pathophysiology of neurodevelopmental and neuropsychiatric disorders resulting from synapse defects. In particular, astrocyte dysfunction has been shown to contribute to the developmental defects in synapse development in Rett syndrome, fragile X syndrome and Down's syndrome.

  • This surprising discovery that neurons rely on astrocytes to instruct the formation of their synapses leads to the possibility that astrocytes provide a layer of control that acts in parallel with, and interacts with, the neuronal processes that control circuit formation. A better understanding of the bidirectional signals between neurons and astrocytes should advance our knowledge of neuronal circuit development in health and disease.

Abstract

Astrocytes are now emerging as key participants in many aspects of brain development, function and disease. In particular, new evidence shows that astrocytes powerfully control the formation, maturation, function and elimination of synapses through various secreted and contact-mediated signals. Astrocytes are also increasingly being implicated in the pathophysiology of many psychiatric and neurological disorders that result from synaptic defects. A better understanding of how astrocytes regulate neural circuit development and function in the healthy and diseased brain might lead to the development of therapeutic agents to treat these diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Astrocytes instruct structural synapse formation by the secretion of several molecules.
Figure 2: Astrocytes secrete signals to induce synapse maturation.
Figure 3: C1q-dependent elimination of synapses by glia.

Similar content being viewed by others

Change history

  • 02 May 2013

    In this article, the corresponding author was listed incorrectly. The corresponding author is Laura E. Clarke, lclarke2@stanford.edu. This has been corrected in the online version of the article.

References

  1. Allen, N. J. et al. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486, 410–414 (2012). This study identifies a novel family of astrocyte-secreted proteins that recruit glutamate receptors to excitatory synapses to induce synapse maturation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Christopherson, K. S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–433 (2005). This study identifies a novel family of astrocyte-secreted proteins that promotes the formation of excitatory synapses.

    Article  CAS  PubMed  Google Scholar 

  3. Hughes, E. G., Elmariah, S. B. & Balice-Gordon, R. J. Astrocyte secreted proteins selectively increase hippocampal GABAergic axon length, branching, and synaptogenesis. Mol. Cell Neurosci. 43, 136–145 (2010). This study demonstrates that in addition to releasing molecules that regulate excitatory synaptogenesis, astrocytes release different molecules to control inhibitory synaptogenesis.

    Article  CAS  PubMed  Google Scholar 

  4. Kucukdereli, H. et al. Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc. Natl Acad. Sci. USA 108, e440–e449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pfrieger, F. W. & Barres, B. A. Synaptic efficacy enhanced by glial cells in vitro. Science 277, 1684–1687 (1997). References 5 and 6 were the first studies to show that astrocytes can induce and control the number of excitatory synapses by secreting soluble signals.

    Article  CAS  PubMed  Google Scholar 

  6. Ullian, E. M., Sapperstein, S. K., Christopherson, K. S. & Barres, B. A. Control of synapse number by glia. Science 291, 657–661 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Pascual, O. et al. Astrocytic purinergic signaling coordinates synaptic networks. Science 310, 113–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Stellwagen, D. & Malenka, R. C. Synaptic scaling mediated by glial TNF-α. Nature 440, 1054–1059 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, Y. et al. Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc. Natl Acad. Sci. USA 100, 15194–15199 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mauch, D. H. et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science 294, 1354–1357 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Craig, A. M., Graf, E. R. & Linhoff, M. W. How to build a central synapse: clues from cell culture. Trends Neurosci. 29, 8–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Auerbach, B. D., Osterweil, E. K. & Bear, M. F. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480, 63–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bennett, M. R. Synapse formation and regression in the cortex during adolescence and in schizophrenia. Med. J. Aust. 190, S14–S16 (2009).

    Article  PubMed  Google Scholar 

  14. Berkel, S. et al. Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nature Genet. 42, 489–491 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Glantz, L. A. & Lewis, D. A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry 57, 65–73 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Hutsler, J. J. & Zhang, H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 1309, 83–94 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Irwin, S. A. et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am. J. Med. Genet. 98, 161–167 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Penzes, P., Cahill, M. E., Jones, K. A., Vanleeuwen, J. E. & Woolfrey, K. M. Dendritic spine pathology in neuropsychiatric disorders. Nature Neurosci. 14, 285–293 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Sweet, R. A., Henteleff, R. A., Zhang, W., Sampson, A. R. & Lewis, D. A. Reduced dendritic spine density in auditory cortex of subjects with schizophrenia. Neuropsychopharmacology 34, 374–389 (2009).

    Article  PubMed  Google Scholar 

  20. Jacobs, S. & Doering, L. C. Astrocytes prevent abnormal neuronal development in the fragile X mouse. J. Neurosci. 30, 4508–4514 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lioy, D. T. et al. A role for glia in the progression of Rett's syndrome. Nature 475, 497–500 (2011). This study shows that astrocytes are integral components of Rett's syndrome and that the restoration of MECP2 in astrocytes can rescue abnormal dendrite morphology and function in vivo , supporting the idea that targeting of glia might be a new strategy for treating neurodevelopmental diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Freeman, M. R. Specification and morphogenesis of astrocytes. Science 330, 774–778 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bushong, E. A., Martone, M. E., Jones, Y. Z. & Ellisman, M. H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22, 183–192 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Halassa, M. M., Fellin, T., Takano, H., Dong, J. H. & Haydon, P. G. Synaptic islands defined by the territory of a single astrocyte. J. Neurosci. 27, 6473–6477 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fiacco, T. A. & McCarthy, K. D. Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia 54, 676–690 (2006).

    Article  PubMed  Google Scholar 

  26. Barres, B. A., Silverstein, B. E., Corey, D. P. & Chun, L. L. Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1, 791–803 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Meyer-Franke, A., Kaplan, M. R., Pfrieger, F. W. & Barres, B. A. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15, 805–819 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Xu, J., Xiao, N. & Xia, J. Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1. Nature Neurosci. 13, 22–24 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Diniz, L. P. et al. Astrocyte-induced synaptogenesis is mediated by transforming growth factor β signaling through modulation of D-serine levels in cerebral cortex neurons. J. Biol. Chem. 287, 41432–41445 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ullian, E. M., Harris, B. T., Wu, A., Chan, J. R. & Barres, B. A. Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture. Mol. Cell. Neurosci. 25, 241–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Buard, I., Steinmetz, C. C., Claudepierre, T. & Pfrieger, F. W. Glial cells promote dendrite formation and the reception of synaptic input in Purkinje cells from postnatal mice. Glia 58, 538–545 (2010).

    PubMed  Google Scholar 

  32. Krencik, R., Weick, J. P., Liu, Y., Zhang, Z. J. & Zhang, S. C. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nature Biotech. 29, 528–534 (2011).

    Article  CAS  Google Scholar 

  33. Goritz, C., Mauch, D. H. & Pfrieger, F. W. Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol. Cell Neurosci. 29, 190–201 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Preuss, T. M., Caceres, M., Oldham, M. C. & Geschwind, D. H. Human brain evolution: insights from microarrays. Nature Rev. Genet. 5, 850–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Eroglu, C. et al. Gabapentin receptor α2δ-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139, 380–392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sigrist, S. J. & Plested, A. J. How to button a bouton with α2δs. Nature Neurosci. 12, 1357–1358 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. DeFreitas, M. F. et al. Identification of integrin α3β1 as a neuronal thrombospondin receptor mediating neurite outgrowth. Neuron 15, 333–343 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Crawford, D. C., Jiang, X., Taylor, A. & Mennerick, S. Astrocyte-derived thrombospondins mediate the development of hippocampal presynaptic plasticity in vitro. J. Neurosci. 32, 13100–13110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jones, E. V. et al. Astrocytes control glutamate receptor levels at developing synapses through SPARC-β-integrin interactions. J. Neurosci. 31, 4154–4165 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ben-Ari, Y., Gaiarsa, J. L., Tyzio, R. & Khazipov, R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol. Rev. 87, 1215–1284 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, Q. Y., Schaffner, A. E., Li, Y. X., Dunlap, V. & Barker, J. L. Upregulation of GABAA current by astrocytes in cultured embryonic rat hippocampal neurons. J. Neurosci. 16, 2912–2923 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Elmariah, S. B., Oh, E. J., Hughes, E. G. & Balice-Gordon, R. J. Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors. J. Neurosci. 25, 3638–3650 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsai, H. H. et al. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337, 358–362 (2012). The authors use genetic approaches to demonstrate that astrocytes are allocated to distinct spatial domains and that the ablation of specific astrocyte populations results in abnormal synaptogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hama, H., Hara, C., Yamaguchi, K. & Miyawaki, A. PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron 41, 405–415 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Barker, A. J., Koch, S. M., Reed, J., Barres, B. A. & Ullian, E. M. Developmental control of synaptic receptivity. J. Neurosci. 28, 8150–8160 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ybot-Gonzalez, P., Copp, A. J. & Greene, N. D. Expression pattern of glypican-4 suggests multiple roles during mouse development. Dev. Dyn. 233, 1013–1017 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Johnson, K. G. et al. The HSPGs Syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron 49, 517–531 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Dunah, A. W. et al. LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses. Nature Neurosci. 8, 458–467 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Alvarez, V. A. & Sabatini, B. L. Anatomical and physiological plasticity of dendritic spines. Annu. Rev. Neurosci. 30, 79–97 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Zhou, Q., Homma, K. J. & Poo, M. M. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749–757 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Yang, Y., Wang, X. B., Frerking, M. & Zhou, Q. Spine expansion and stabilization associated with long-term potentiation. J. Neurosci. 28, 5740–5751 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dunaevsky, A., Blazeski, R., Yuste, R. & Mason, C. Spine motility with synaptic contact. Nature Neurosci. 4, 685–686 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Lendvai, B., Stern, E. A., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404, 876–881 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Dailey, M. E. & Smith, S. J. The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci. 16, 2983–2994 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Portera-Cailliau, C., Pan, D. T. & Yuste, R. Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J. Neurosci. 23, 7129–7142 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ziv, N. E. & Smith, S. J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Campbell, G. & Shatz, C. J. Synapses formed by identified retinogeniculate axons during the segregation of eye input. J. Neurosci. 12, 1847–1858 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lehre, K. P. & Rusakov, D. A. Asymmetry of glia near central synapses favors presynaptically directed glutamate escape. Biophys. J. 83, 125–134 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ventura, R. & Harris, K. M. Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci. 19, 6897–6906 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Benediktsson, A. M., Schachtele, S. J., Green, S. H. & Dailey, M. E. Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures. J. Neurosci. Methods 141, 41–53 (2005).

    Article  PubMed  Google Scholar 

  61. Haber, M., Zhou, L. & Murai, K. K. Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J. Neurosci. 26, 8881–8891 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hirrlinger, J., Hulsmann, S. & Kirchhoff, F. Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur. J. Neurosci. 20, 2235–2239 (2004).

    Article  PubMed  Google Scholar 

  63. Nett, W. J., Oloff, S. H. & McCarthy, K. D. Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J. Neurophysiol. 87, 528–537 (2002).

    Article  PubMed  Google Scholar 

  64. Perea, G. & Araque, A. Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J. Neurosci. 25, 2192–2203 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, X. et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nature Neurosci. 9, 816–823 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Panatier, A. et al. Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146, 785–798 (2011). This study uses elegant imaging techniques to demonstrate that astrocytes can detect and respond to physiological synaptic stimuli.

    Article  CAS  PubMed  Google Scholar 

  67. Danbolt, N. C. Glutamate uptake. Prog. Neurobiol. 65, 1–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Verbich, D., Prenosil, G. A., Chang, P. K., Murai, K. K. & McKinney, R. A. Glial glutamate transport modulates dendritic spine head protrusions in the hippocampus. Glia 60, 1067–1077 (2012).

    Article  PubMed  Google Scholar 

  69. Murai, K. K., Nguyen, L. N., Irie, F., Yamaguchi, Y. & Pasquale, E. B. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nature Neurosci. 6, 153–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Carmona, M. A., Murai, K. K., Wang, L., Roberts, A. J. & Pasquale, E. B. Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc. Natl Acad. Sci. USA 106, 12524–12529 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Goda, Y. & Davis, G. W. Mechanisms of synapse assembly and disassembly. Neuron 40, 243–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Kano, M. & Hashimoto, K. Synapse elimination in the central nervous system. Curr. Opin. Neurobiol. 19, 154–161 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Sanes, J. R. & Lichtman, J. W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Fuentes-Medel, Y. et al. Glia and muscle sculpt neuromuscular arbors by engulfing destabilized synaptic boutons and shed presynaptic debris. PLoS. Biol. 7, e1000184 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Hong, Y. K. & Chen, C. Wiring and rewiring of the retinogeniculate synapse. Curr. Opin. Neurobiol. 21, 228–237 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Perry, V. H. & O'Connor, V. C1q: the perfect complement for a synaptic feast? Nature Rev. Neurosci. 9, 807–811 (2008).

    Article  CAS  Google Scholar 

  80. Gasque, P. et al. The receptor for complement anaphylatoxin C3a is expressed by myeloid cells and nonmyeloid cells in inflamed human central nervous system: analysis in multiple sclerosis and bacterial meningitis. J. Immunol. 160, 3543–3554 (1998).

    CAS  PubMed  Google Scholar 

  81. Schiefer, J., Kampe, K., Dodt, H. U., Zieglgansberger, W. & Kreutzberg, G. W. Microglial motility in the rat facial nucleus following peripheral axotomy. J. Neurocytol. 28, 439–453 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. al-Ali, S. Y. & al-Hussain, S. M. An ultrastructural study of the phagocytic activity of astrocytes in adult rat brain. J. Anat. 188, 257–262 (1996).

    PubMed  PubMed Central  Google Scholar 

  84. Bechmann, I. & Nitsch, R. Astrocytes and microglial cells incorporate degenerating fibers following entorhinal lesion: a light, confocal, and electron microscopical study using a phagocytosis-dependent labeling technique. Glia 20, 145–154 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Lantos, P. L. An electron microscope study of reacting astrocytes in gliomas induced by n-ethyl-n-nitrosourea in rats. Acta Neuropathol. 30, 175–181 (1974).

    Article  CAS  PubMed  Google Scholar 

  86. Berbel, P. & Innocenti, G. M. The development of the corpus callosum in cats: a light- and electron-microscopic study. J. Comp. Neurol. 276, 132–156 (1988).

    Article  CAS  PubMed  Google Scholar 

  87. Loov, C., Hillered, L., Ebendal, T. & Erlandsson, A. Engulfing astrocytes protect neurons from contact-induced apoptosis following injury. PLoS ONE. 7, e33090 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Nguyen, J. V. et al. Myelination transition zone astrocytes are constitutively phagocytic and have synuclein dependent reactivity in glaucoma. Proc. Natl Acad. Sci. USA 108, 1176–1181 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Doyle, J. P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lovatt, D. et al. The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J. Neurosci. 27, 12255–12266 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mallat, M., Marin-Teva, J. L. & Cheret, C. Phagocytosis in the developing CNS: more than clearing the corpses. Curr. Opin. Neurobiol. 15, 101–107 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Kinchen, J. M. et al. Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in C. elegans. Nature 434, 93–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Ziegenfuss, J. S., Doherty, J. & Freeman, M. R. Distinct molecular pathways mediate glial activation and engulfment of axonal debris after axotomy. Nature Neurosci. 15, 979–987 (2012). This study identifies new components of the glial engulfment machinery and shows that glial activation and phagocytosis after injury are mediated by distinct signalling pathways.

    Article  CAS  PubMed  Google Scholar 

  95. Sokolowski, J. D. et al. Brain-specific angiogenesis inhibitor-1 expression in astrocytes and neurons: implications for its dual function as an apoptotic engulfment receptor. Brain Behav. Immun. 25, 915–921 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Park, D. et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450, 430–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Wu, Y., Singh, S., Georgescu, M. M. & Birge, R. B. A role for Mer tyrosine kinase in δvβ5 integrin-mediated phagocytosis of apoptotic cells. J. Cell Sci. 118, 539–553 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Yu, X., Lu, N. & Zhou, Z. Phagocytic receptor CED-1 initiates a signaling pathway for degrading engulfed apoptotic cells. PLoS. Biol. 6, e61 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Chahrour, M. & Zoghbi, H. Y. The story of Rett syndrome: from clinic to neurobiology. Neuron 56, 422–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Chen, R. Z., Akbarian, S., Tudor, M. & Jaenisch, R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nature Genet. 27, 327–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Luikenhuis, S., Giacometti, E., Beard, C. F. & Jaenisch, R. Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc. Natl Acad. Sci. USA 101, 6033–6038 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ballas, N., Lioy, D. T., Grunseich, C. & Mandel, G. Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nature Neurosci. 12, 311–317 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Pfeiffer, B. E. & Huber, K. M. The state of synapses in fragile X syndrome. Neuroscientist. 15, 549–567 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Deng, P. Y. et al. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels. Neuron 77, 696–711 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Beckel-Mitchener, A. & Greenough, W. T. Correlates across the structural, functional, and molecular phenotypes of fragile X syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 10, 53–59 (2004).

    Article  PubMed  Google Scholar 

  106. Benavides-Piccione, R. et al. On dendrites in Down syndrome and DS murine models: a spiny way to learn. Prog. Neurobiol. 74, 111–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Garcia, O., Torres, M., Helguera, P., Coskun, P. & Busciglio, J. A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down's syndrome. PLoS ONE. 5, e14200 (2010). This study shows that astrocytic dysfunction can contribute to the synaptic defects that are found in Down's syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hagerman, P. J. & Stafstrom, C. E. Origins of epilepsy in fragile X syndrome. Epilepsy Curr. 9, 108–112 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Tabuchi, K. et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318, 71–76 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Barnby, G. et al. Candidate-gene screening and association analysis at the autism-susceptibility locus on chromosome 16p: evidence of association at GRIN2A and ABAT. Am. J. Hum. Genet. 76, 950–966 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Maekawa, M. et al. Polymorphism screening of brain-expressed FABP7, 5 and 3 genes and association studies in autism and schizophrenia in Japanese subjects. J. Hum. Genet. 55, 127–130 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Ming, X. et al. Genetic variant of glutathione peroxidase 1 in autism. Brain Dev. 32, 105–109 (2010).

    Article  PubMed  Google Scholar 

  113. Foo, L. C. et al. Development of a method for the purification and culture of rodent astrocytes. Neuron 71, 799–811 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nature Rev. Neurosci. 10, 724–735 (2009).

    Article  CAS  Google Scholar 

  115. Miller, J. A., Horvath, S. & Geschwind, D. H. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc. Natl Acad. Sci. USA 107, 12698–12703 (2010). This study compares human and mouse transciptomes and finds that glial transciptomes might have evolutionarily diverged more than neuronal transcriptomes between these two species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gomez-Casati, M. E. et al. Nonneuronal cells regulate synapse formation in the vestibular sensory epithelium via erbB-dependent BDNF expression. Proc. Natl Acad. Sci. USA 107, 17005–17010 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura E. Clarke.

Ethics declarations

Competing interests

B.A.B. is a co-founder of Annexon Inc., a new company that will develop therapeutics for neurological diseases.

Glossary

Silent synapses

Excitatory synapses whose postsynaptic membranes contain NMDA-type glutamate receptors but not AMPA-type glutamate receptors, rendering the synapses inactive under normal physiological conditions.

Type 2 epidermal growth factor-like repeats

Evolutionarily conserved protein sequences that are found in the extracellular domains of several membrane-bound or secreted proteins. Epidermal growth factor-like domains are frequently found in numerous tandem copies of proteins, and these repeats fold together to form a single functional unit.

Von Willebrand factor type A domain

A domain in the large human multimeric von Willebrand factor glycoprotein that is found in blood plasma. This domain is found in various plasma and extracellular proteins and allows these proteins to form multiprotein complexes to participate in numerous biological events (for example, cell adhesion, migration and signal transduction).

Matricellular SPARC family

Matricellular glycoproteins that modulate the interaction of cells with the extracellular matrix primarily through regulation of cell adhesion, cell proliferation and matrix deposition.

Glycosyl-phosphatidylinositol linkages

Post-translational lipid modifications that are found in a diverse range of proteins. The glycosyl-phosphatidylinositol domain serves to anchor these proteins to the membrane. Glycosyl-phosphatidylinositol proteins can be released from the cell membrane upon cleavage by endogenous phospholipases.

Ephrins

Ephrins are ligands that bind to the EPH receptors. Both ephrins and EPH receptors are membrane-bound proteins, so activation of EPH–ephrin signalling pathways can only occur through direct cell–cell contact. Ephrin signalling regulates various biological processes, including the guidance of axon growth cones and cell migration.

Classical complement cascade

This system amplifies the immune response to aid the clearance of pathogens from an organism. The complement system consists of many small proteins found in the blood. When stimulated, proteases in this system cleave proteins to release cytokines and initiate a cascade of further cleavages to amplify the immune response.

Opsonize

To tag a pathogen by the binding of an antibody (or opsonin) to target it for removal by a phagocytic cell.

Polyglutamine repeats

Expanded runs of consecutive trinucleotide CAG repeats, which encode polyglutamine. These repeats are found in the genes of a large number of patients with neurodegenerative diseases such as Huntington's disease, fragile X syndrome and ataxia. Polyglutamine repeats are thought to cause protein aggregation, which is a key feature of these diseases.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, L., Barres, B. Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14, 311–321 (2013). https://doi.org/10.1038/nrn3484

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3484

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing