Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Inverse cancer comorbidity: a serendipitous opportunity to gain insight into CNS disorders

Abstract

Inverse comorbidity is a lower-than-expected probability of disease occuring in individuals who have been diagnosed with other medical conditions. Emerging evidence points to inverse cancer comorbidity in people with certain CNS disorders. In this Opinion article, we discuss the evidence for this intriguing association and possible underlying mechanisms. We believe that this association is an invaluable opportunity to gain insight into the pathogenesis of these diseases, and understanding why certain individuals with CNS disorders are protected against many different types of cancer could help to develop new and improved treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential molecular links between Alzheimer's disease and cancer.
Figure 2: Potential molecular mechanisms underlying the inverse comorbidity between schizophrenia and cancer.
Figure 3: CNS interaction in cancer biology: interactome under construction.

Similar content being viewed by others

References

  1. [No authors listed]. A decade for psychiatric disorders. Nature 463, 9 (2010).

  2. Haber, D. A. Gray, N. S. & Baselga, J. The evolving war on cancer. Cell 145, 19–24 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Murray, C. J. L. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2012).

    Article  PubMed  Google Scholar 

  4. Alberts, B. On incentives for innovation. Science 326, 1163 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Barnett, K. et al. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet 380, 37–43 (2012).

    Article  PubMed  Google Scholar 

  6. Schmidt, P. & Okun, M. S. Parkinson disease: improving quality of care in Parkinson disease. Nature Rev. Neurol. 7, 196–197 (2011).

    Article  Google Scholar 

  7. TabaréS-Seisdedos, R. & Rubenstein, J. L. Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer. Mol. Psychiatry 14, 563–589 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. TabaréS-Seisdedos, R. et al. No paradox, no progress: inverse cancer comorbidity in people with other complex diseases. Lancet Oncol. 12, 604–608 (2011).

    Article  PubMed  Google Scholar 

  9. Devine, M. J., Plun-Favreau, H. & Wood, N. W. Parkinson's disease and cancer: two wars, one front. Nature Rev. Cancer 11, 812–823 (2011).

    Article  CAS  Google Scholar 

  10. Nižetić, D. & Groet, J. Tumorigenesis in Down's syndrome: big lessons from a small chromosome. Nature Rev. Cancer. 12, 721–732 (2012).

    Article  CAS  Google Scholar 

  11. Lauritsen, M. B., Mors, O., Mortensen, P. B. & Ewald, H. Medical disorders among inpatients with autism in Denmark according to ICD-8: a nationwide register-based study. J. Autism Dev. Disord. 32, 115–119 (2002).

    Article  PubMed  Google Scholar 

  12. Dalton, S. O., Mellemkjaer, L., Thomassen, L., Mortensen, P. B. & Johansen, C. Risk for cancer in a cohort of patients hospitalized for schizophrenia in Denmark, 1969–1993. Schizophr. Res. 75, 315–324 (2005).

    Article  PubMed  Google Scholar 

  13. Goldacre, M. J., Kurina, L. M., Wotton, C. J., Yeates, D. & Seagroat, V. Schizophrenia and cancer: an epidemiological study. Br. J. Psychiatry 187, 334–338 (2005).

    Article  PubMed  Google Scholar 

  14. Grinshpoon, A. et al. Cancer in schizophrenia: is the risk higher or lower? Schizophr. Res. 73, 333–341 (2005).

    Article  PubMed  Google Scholar 

  15. Gulbinat, W. et al. Cancer incidence of schizophrenic patients. Results of record linkage studies in three countries. Br. J. Psychiatry Suppl. 18, 75–83 (1992).

    Google Scholar 

  16. Lichtermann, D., Ekelund, J., Pukkala, E., Tanskanen, A. & Lönnqvist, J. Incidence of cancer among persons with schizophrenia and their relatives. Arch. Gen. Psychiatry 58, 573–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Lawrence, D., Holman, C. D., Jablensky, A. V., Threlfall, T. J. & Fuller, S. A. Excess cancer mortality in Western Australian psychiatric patients due to higher case fatality rates. Acta Psychiatr. Scand. 101, 382–388 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Barak, Y., Levy, T., Achiron, A. & Aizenberg, D. Breast cancer in women suffering from serious mental illness. Schizophr. Res. 102, 249–253 (2008).

    Article  PubMed  Google Scholar 

  19. Lin, G. M. et al. Cancer incidence in patients with schizophrenia or bipolar disorder: a nationwide population-based study in Taiwan, 1997–2009. Schizophr. Bull. 39, 407–416 (2013).

    Article  PubMed  Google Scholar 

  20. McGinty, E. E. et al. Cancer incidence in a sample of Maryland residents with serious mental illness. Psychiatr. Serv. 63, 714–717 (2012).

    Article  PubMed  Google Scholar 

  21. Ji, J. et al. Incidence of cancer in patients with schizophrenia and their first-degree relatives: a population-based study in Sweden. Schizophr. Bull. 20 Apr 2012 (doi:10.1093/schbul/sbs065).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dalton, S. O., Laursen, T. M., Mellemkjaer, L., Johansen, C. & Mortensen, P. B. Risk for cancer in parents of patients with schizophrenia. Am. J. Psychiatry 161, 903–908 (2004).

    Article  PubMed  Google Scholar 

  23. Levav, I. et al. Cancer risk among parents and siblings of patients with schizophrenia. Br. J. Psychiatry 190, 156–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Bjørge, T., Cnattingius, S., Lie, R. T., Tretli, S. & Engeland, A. Cancer risk in children with birth defects and in their families: a population based cohort study of 5.2 million children from Norway and Sweden. Cancer Epidemiol. Biomarkers Prev. 17, 500–506 (2008).

    Article  PubMed  Google Scholar 

  25. Goldacre, M. J., Wotton, C. J., Seagroatt, V. & Yeates, D. Cancers and immune related diseases associated with Down's syndrome: a record linkage study. Arch. Dis. Child. 89, 1014–1017 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boker, L. K. et al. Incidence of leukemia and other cancers in Down syndrome subjects in Israel. Int. J. Cancer 1, 741–744 (2001).

    Article  Google Scholar 

  27. Hasle, H., Clemmensen, I. H. & Mikkelsen, M. Risks of leukaemia and solid tumours in individuals with Down's syndrome. Lancet 15, 165–169 (2000).

    Article  Google Scholar 

  28. Sullivan, S. G., Hussain, R., Glasson, E. J. & Bittles, A. H. The profile and incidence of cancer in Down syndrome. J. Intellect. Disabil. Res. 51, 228–231 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Patja, K., Pukkala, E., Sund, R., Iivanainen, M. & Kaski, M. Cancer incidence of persons with Down syndrome in Finland: a population-based study. Int. J. Cancer 1, 1769–1772 (2006).

    Article  CAS  Google Scholar 

  30. Roe, C. M. et al. Cancer linked to Alzheimer disease but not vascular dementia. Neurology 74, 106–112 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Driver, J. A. et al. Inverse association between cancer and Alzheimer's disease: results from the Framingham Heart Study. BMJ 2012, e1442 (2012).

    Article  Google Scholar 

  32. Olsen, J. H. et al. Atypical cancer patterns in patients with Parkinson's disease. Br. J. Cancer 92, 201–205 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Elbaz, A. et al. Risk of cancer after the diagnosis of Parkinson's disease: a historical cohort. Mov. Disord. 20, 719–725 (2005).

    Article  PubMed  Google Scholar 

  34. Minami, Y., Yamamoto, R., Nishikouri, M., Fukao, A. & Hisamichi, S. Mortality and cancer incidence in patients with Parkinson's disease. J. Neurol. 247, 429–434 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Becker, C., Brobert, G. P., Johansson, S., Jick, S. S. & Meier, C. R. Cancer risk in association with Parkinson disease: a population-based study. Parkinsonism Relat. Disord. 16, 186–190 (2010).

    Article  PubMed  Google Scholar 

  36. Fois, A. F., Wotton, C. J., Yeates, D., Turner, M. R. & Goldacre, M. J. Cancer in patients with motor neuron disease, multiple sclerosis and Parkinson's disease: record linkage studies. J. Neurol. Neurosurg. Psychiatry 81, 215–221 (2010).

    Article  PubMed  Google Scholar 

  37. Jansson, B. & Jankovic, J. Low cancer rates among patients with Parkinson's disease. Ann. Neurol. 17, 505–509 (1985).

    Article  CAS  PubMed  Google Scholar 

  38. Lo, R. Y. et al. Comorbid cancer in Parkinson's disease. Mov. Disord. 25, 1809–1817 (2010).

    Article  PubMed  Google Scholar 

  39. Bertoni, J. M. et al. Increased melanoma risk in Parkinson disease: a prospective clinicopathological study. Arch. Neurol. 67, 347–352 (2010).

    Article  PubMed  Google Scholar 

  40. Bahmanyar, S., Montgomery, S. M., Hillert, J., Ekbom, A. & Olsson, T. Cancer risk among patients with multiple sclerosis and their parents. Neurology 72, 1170–1177 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Goldacre, M. J., Seagroatt, V., Yeates, D. & Acheson, E. D. Skin cancer in people with multiple sclerosis: a record linkage study. J. Epidemiol. Community Health 58, 142–144 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sumelahti, M. L., Pukkala, E. & Hakama, M. Cancer incidence in multiple sclerosis: a 35-year follow-up. Neuroepidemiology 23, 224–227 (2004).

    Article  PubMed  Google Scholar 

  43. Midgard, R. et al. Multiple sclerosis and cancer in Norway. A retrospective cohort study. Acta Neurol. Scand. 93, 411–415 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Lebrun, C. et al. Cancer risk and impact of disease-modifying treatments in patients with multiple sclerosis. Mult. Scler. 14, 399–405 (2008).

    Article  PubMed  Google Scholar 

  45. Achiron, A. et al. Cancer incidence in multiple sclerosis and effects of immunomodulatory treatments. Breast Cancer Res. Treat. 89, 265–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Nielsen, N. M. et al. Cancer risk among patients with multiple sclerosis: a population based register study. Int. J. Cancer 118, 979–984 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Kingwell, E. et al. Cancer risk in multiple sclerosis: findings from British Columbia, Canada. Brain 135, 2973–2979 (2012).

    Article  PubMed  Google Scholar 

  48. Zisfein, J. & Caroscio, J. T. No association of amyotrophic lateral sclerosis with cancer. Mt Sinai J. Med. 55, 159–161 (1988).

    CAS  PubMed  Google Scholar 

  49. Sørensen, S. A., Fenger, K. & Olsen, J. H. Significantly lower incidence of cancer among patients with Huntington disease: an apoptotic effect of an expanded polyglutamine tract? Cancer 86, 1342–1346 (1999).

    Article  PubMed  Google Scholar 

  50. Ji, J., Sundquist, K. & Sundquist, J. Cancer incidence in patients with polyglutamine diseases: a population-based study in Sweden. Lancet Oncol. 13, 642–648 (2012).

    Article  PubMed  Google Scholar 

  51. Selkoe, D. J. Preventing Alzheimer's disease. Science 337, 1488–1492 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Ganguli, M. A reduced risk of Alzheimer's disease in those who survive cancer. BMJ 2012, e1662 (2012).

    Article  Google Scholar 

  53. Driver, J. A. & Lu, K. P. Pin1: a new genetic link between Alzheimer's disease, cancer and aging. Curr. Aging Sci. 3, 158–165 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Checler, F. & Dunys, J. p53, a pivotal effector of a functional cross-talk linking presenilins and Pen-2. Neurodegener. Dis. 10, 52–55 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Liou, Y. C. et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424, 556–561 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Behrens, M. I. et al. Inverse susceptibility to oxidative death of lymphocytes obtained from Alzheimer's patients and skin cancer survivors: increased apoptosis in Alzheimer's and reduced necrosis in cancer. J. Gerontol. A. Biol. Sci. Med. Sci. 67, 1036–1040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Extance, A. Alzheimer's failure raises questions about disease-modifying strategies. Nature Rev. Drug Discov. 9, 749–751 (2010).

    Article  CAS  Google Scholar 

  58. Konishi, J. et al. γ-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Res. 67, 8051–8057 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Mizugaki, H. et al. γ-Secretase inhibitor enhances antitumour effect of radiation in Notch-expressing lung cancer. Br. J. Cancer. 106, 1953–1959 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Castellano, J. M. et al. Low-density lipoprotein receptor overexpression enhances the rate of brain-to-blood Aβ clearance in a mouse model of β-amyloidosis. Proc. Natl Acad. Sci. USA 109, 15502–15507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Castellano, J. M. et al. Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci. Transl. Med. 3, 89ra57 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kulminski, A. et al. Trade-off in the effect of the APOE gene on the ages at onset of CVD and cancer across ages, gender, and human generations. Rejuvenation Res. 16, 28–34 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Junn, E. & Mouradian, M. M. MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol. Ther. 133, 142–150 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Hébert, S. S. et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression. Proc. Natl Acad. Sci. USA 105, 6415–6420 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Saito, Y. & Saito, H. MicroRNAs in cancers and neurodegenerative disorders. Front. Genet. 3, 194 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Harrison, P. J. & Weinberger, D. R. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry 10, 40–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Catts, V. S. Catts, S. V. O'Toole, B. I. & Frost, A. D. Cancer incidence in patients with schizophrenia and their first-degree relatives — a meta-analysis. Acta Psychiatr. Scand. 117, 323–336 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Yu, W., Clyne, M., Khoury, M. J. & Gwinn, M. Phenopedia and Genopedia: disease-centered and gene-centered views of the evolving knowledge of human genetic associations. Bioinformatics 26, 145–146 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Futreal, P. A. et al. A census of human cancer genes. Nature Rev. Cancer 4, 177–183 (2004).

    Article  CAS  Google Scholar 

  70. Baudot, A., de la Torre, V. & Valencia, A. Mutated genes, pathways and processes in tumours. EMBO Rep. 11, 805–810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lanni, C., Racchi, M., Memo, M., Govoni, S. & Uberti, D. p53 at the crossroads between cancer and neurodegeneration. Free Radic. Biol. Med. 52, 1727–1733 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Cully, M., You, H., Levine, A. J. & Mak, T. W. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nature Rev. Cancer 6, 184–192 (2006).

    Article  CAS  Google Scholar 

  73. Zhou, J. & Parada, L. F. PTEN signaling in autism spectrum disorders. Curr. Opin. Neurobiol. 22, 873–879 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Park, J. K. et al. Differences in p53 gene polymorphisms between Korean schizophrenia and lung cancer patients. Schizophr. Res. 67, 71–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, Y. et al. Polymorphisms of XRCC4 are involved in reduced colorectal cancer risk in Chinese schizophrenia patients. BMC Cancer 10, 523 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Georgieva, L. et al. Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. Proc. Natl Acad. Sci. USA 103, 12469–12474 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee, S. Y. & Haydon, P. G. A cytokine-dependent switch for glial-neuron interactions. Neuron 69, 835–837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kanakry, C. G., Li, Z., Nakai, Y., Sei, Y. & Weinberger, D. R. Neuregulin-1 regulates cell adhesion via an ErbB2/phosphoinositide-3 kinase/Akt-dependent pathway: potential implications for schizophrenia and cancer. PLoS ONE 2, e1369 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bi, W. et al. Increased LIS1 expression affects human and mouse brain development. Nature Genet. 41, 168–177 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Godin, J. D. et al. Huntingtin is required for mitotic spindle orientation and mammalian neurogenesis. Neuron. 67, 392–406 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Sumigray, K. D., Chen, H. & Lechler, T. Lis1 is essential for cortical microtubule organization and desmosome stability in the epidermis. J. Cell Biol. 194, 631–642 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Keryer, G. et al. Ciliogenesis is regulated by a huntingtin–HAP1–PCM1 pathway and is altered in Huntington disease. J. Clin. Invest. 121, 4372–4382 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Serrano, M. Cancer: final act of senescence. Nature 23, 481–482 (2011).

    Article  CAS  Google Scholar 

  84. Campisi, J., Andersen, J. K., Kapahi, P. & Melov, S. Cellular senescence: a link between cancer and age-related degenerative disease? Semin. Cancer Biol. 21, 354–359 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Rothwell, P. M. et al. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 379, 1591–1601 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Pomponi, M. F., Gambassi, G., Pomponi, M., Di Gioia, A. & Masullo, C. Why docosahexaenoic acid and aspirin supplementation could be useful in women as a primary prevention therapy against Alzheimer's disease? Ageing Res. Rev. 10, 124–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Thun, M. J., Jacobs, E. J. & Patrono, C. The role of aspirin in cancer prevention. Nature Rev. Clin. Oncol. 9, 259–267 (2012).

    Article  CAS  Google Scholar 

  88. Bhalla, K. et al. Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis. Cancer Prev. Res. 5, 544–552 (2012).

    Article  CAS  Google Scholar 

  89. Vitale-Cross, L. et al. Metformin prevents the development of oral squamous cell carcinomas from carcinogen-induced premalignant lesions. Cancer Prev. Res. 5, 562–573 (2012).

    Article  CAS  Google Scholar 

  90. Nielsen, S. F., Nordestgaard, B. G. & Bojesen, S. E. Statin use and reduced cancer-related mortality. N. Engl. J. Med. 367, 1792–1802 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Ullah, I. Ullah, N. Naseer, M. I., Lee, H. Y. & Kim, M. O. Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons. BMC Neurosci. 13, 11 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gupta, A. Bisht, B. & Dey, C. S. Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer's-like changes. Neuropharmacology 60, 910–920 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. McEwen, B. S. & Gianaros, P. J. Stress- and allostasis-induced brain plasticity. Annu. Rev. Med. 62, 431–445 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mayer, E. A. Gut feelings: the emerging biology of gut-brain communication. Nature Rev. Neurosci. 12, 453–466 (2011).

    Article  CAS  Google Scholar 

  95. Mravec, B., Ondicova, K., Valaskova, Z., Gidron, Y. & Hulin, I. Neurobiological principles in the etiopathogenesis of disease: when diseases have a head. Med. Sci. Monit. 15, RA6–RA16 (2009).

    PubMed  Google Scholar 

  96. Ondicova, K. & Mravec, B. Role of nervous system in cancer aetiopathogenesis. Lancet Oncol. 11, 596–601 (2010).

    Article  PubMed  Google Scholar 

  97. Cao, L. & During, M. J. What is the brain–cancer connection? Annu. Rev. Neurosci. 35, 331–345 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Antoni, M. H. et al. The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nature Rev. Cancer 6, 240–248 (2006).

    Article  CAS  Google Scholar 

  99. Cao, L. et al. Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell 142, 52–64 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sachlos, E. et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell 149, 1284–1297 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Li, Z. J. & Cho, C. H. Neurotransmitters, more than meets the eye — neurotransmitters and their perspectives in cancer development and therapy. Eur. J. Pharmacol. 667, 17–22 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Schuller, H. M. Is cancer triggered by altered signalling of nicotinic acetylcholine receptors? Nature Rev. Cancer 9, 195–205 (2009).

    Article  CAS  Google Scholar 

  103. Chubak, J., Boudreau, D. M., Rulyak, S. J. & Mandelson, M. T. Colorectal cancer risk in relation to antidepressant medication use. Int. J. Cancer 128, 227–232 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Burgess, D. J. Tumour immunogenicity: editorial selection demystified. Nature Rev. Cancer 12, 227 (2012).

    Article  CAS  Google Scholar 

  106. Alderton, G. K. & Bordon, Y. Tumour immunotherapy-leukocytes take up the fight. Nature Rev. Immunol. 12, 235 (2012).

    CAS  Google Scholar 

  107. Trakhtenberg, E. F. & Goldberg, J. L. Immunology. Neuroimmune communication. Science 334, 47–48 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Deverman, B. E. & Patterson, P. H. Cytokines and CNS development. Neuron. 64, 61–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Davison, K. Autoimmunity in psychiatry. Br. J. Psychiatry 200, 353–355 (2012).

    Article  PubMed  Google Scholar 

  111. Dalmau, J. & Rosenfeld, M. R. Paraneoplastic syndromes of the CNS. Lancet Neurol. 7, 327–340 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Graus, F. & Dalmau, J. CNS autoimmunity: new findings and pending issues. Lancet Neurol. 11, 17–19 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Palucka, K. & Banchereau, J. Cancer immunotherapy via dendritic cells. Nature Rev. Cancer 12, 265–277 (2012).

    Article  CAS  Google Scholar 

  114. Fuertes, M. B. et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J. Exp. Med. 208, 2005–2016 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nature Rev. Cancer 12, 252–264 (2012).

    Article  CAS  Google Scholar 

  116. Davis, S., Mirick, D. K. & Stevens, R. G. Night shift work, light at night, and risk of breast cancer. J. Natl Cancer Inst. 93, 1557–1562 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Monsees, G. M., Kraft, P., Hankinson, S. E., Hunter, D. J. & Schernhammer, E. S. Circadian genes and breast cancer susceptibility in rotating shift workers. Int. J. Cancer 131, 2547–2552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schernhammer, E. S. et al. Night-shift work and risk of colorectal cancer in the nurses' health study. J. Natl Cancer Inst. 95, 825–828 (2003).

    Article  PubMed  Google Scholar 

  119. Straif, K. et al. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 8, 1065–1066 (2007).

    Article  PubMed  Google Scholar 

  120. Hart, C. L. et al. Combined effects of methamphetamine and zolpidem on performance and mood during simulated night shift work. Pharmacol. Biochem. Behav. 81, 559–568 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Wulff, K., Gatti, S., Wettstein, J. G. & Foster, R. G. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nature Rev. Neurosci. 11, 589–599 (2010).

    Article  CAS  Google Scholar 

  122. Chen, S. T. et al. Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis 26, 1241–1246 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Hunt, T. & Sassone-Corsi, P. Riding tandem: circadian clocks and the cell cycle. Cell 129, 461–464 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Fu, L. et al. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111, 41–50 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Hasan, S. et al. Altered sleep and behavioral activity phenotypes in PER3-deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1821–R1830 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Climent, J. et al. Deletion of the PER3 gene on chromosome 1p36 in recurrent ER-positive breast cancer. J. Clin. Oncol. 28, 3770–3778 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, X. et al. Reduced expression of PER3 is associated with incidence and development of colon cancer. Ann. Surg. Oncol. 19, 3081–3088 (2012).

    Article  PubMed  Google Scholar 

  128. Archer, S. N. et al. A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26, 413–415 (2003).

    Article  PubMed  Google Scholar 

  129. Zhu, Y. et al. Period3 structural variation: a circadian biomarker associated with breast cancer in young women. Cancer Epidemiol. Biomarkers Prev. 14, 268–270 (2005).

    CAS  PubMed  Google Scholar 

  130. Benedetti, F. et al. A length polymorphism in the circadian clock gene Per3 influences age at onset of bipolar disorder. Neurosci. Lett. 445, 184–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Cuninkova, L. & Brown, S. A. Peripheral circadian oscillators: interesting mechanisms and powerful tools. Ann. NY Acad. Sci. 1129, 358–370 (2008).

    Article  PubMed  Google Scholar 

  132. Wulff, K., Dijk, D. J., Middleton, B., Foster, R. G. & Joyce, E. M. Sleep and circadian rhythm disruption in schizophrenia. Br. J. Psychiatry 200, 308–316 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Bauer, M. et al. Impact of sunlight on the age of onset of bipolar disorder. Bipolar Disord. 14, 654–663 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kondratova, A. A. & Kondratov, R. V. The circadian clock and pathology of the ageing brain. Nature Rev. Neurosci. 13, 325–335 (2012).

    Article  CAS  Google Scholar 

  135. Margheri, M. et al. Combined effects of melatonin and all-trans retinoic acid and somatostatin on breast cancer cell proliferation and death: molecular basis for the anticancer effect of these molecules. Eur. J. Pharmacol. 681, 34–43 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Innominato, P. F., Palesh, O., Dhabhar, F. S., Lévi, F. & Spiegel, D. Regulation of circadian rhythms and hypothalamic–pituitary–adrenal axis: an overlooked interaction in cancer. Lancet Oncol. 11, 816–817 (2010).

    Article  PubMed  Google Scholar 

  137. Oprea, T. I. et al. Drug repurposing from an academic perspective. Drug Discov. Today Ther. Strateg. 8, 61–69 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ohlow, M. J. & Moosmann, B. Phenothiazine: the seven lives of pharmacology's first lead structure. Drug Discov. Today 16, 119–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Chigaev, A., Wu, Y., Williams, D. B., Smagley, Y. & Sklar, L. A. Discovery of very late antigen-4 (VLA-4, α4β1 Integrin) allosteric antagonists. J. Biol. Chem. 286, 5455–5463 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Benjamin, D., Colombi, M., Moroni, C. & Hall, M. N. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nature Rev. Drug Discov. 10, 868–880 (2011).

    Article  CAS  Google Scholar 

  141. Ehninger, D. & Silva, A. J. Rapamycin for treating Tuberous sclerosis and Autism spectrum disorders. Trends Mol. Med. 17, 78–87 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Tsai, P. T. et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488, 647–651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cramer, P. E. et al. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335, 1503–1506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Janakiram, N. B. et al. Chemopreventive effects of RXR-selective rexinoid bexarotene on intestinal neoplasia of ApcMin/+ mice. Neoplasia 14, 159–168 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. D'Onofrio, G. et al. Advances in the identification of γ-secretase inhibitors for the treatment of Alzheimer's disease. Expert. Opin. Drug. Discov. 7, 19–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Barley, E., Borschmann, R., Walters, P. & Tylee, A. Interventions to encourage uptake of cancer screening for people with severe mental illness (Protocol). Cochrane Libr. 2, 1–11 (2012).

    Google Scholar 

  147. Fernández-Guardiola, A. (ed.) Las Neurociencias En El Exilio Español En México 63–96 (Fondo Cultura Económica, 1997).

    Google Scholar 

  148. Feinstein, A. R. The pre-therapeutic classification of co-morbidity in chronic disease. J. Chron. Dis. 23, 455–468 (1970).

    Article  CAS  PubMed  Google Scholar 

  149. Barabási, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nature Rev. Genet. 12, 56–68 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Ukraintseva, S. V. et al. Trade-offs between cancer and other diseases: do they exist and influence longevity? Rejuvenation Res. 13, 387–396 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Baek, K. H. et al. Down's syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature 459, 1126–1130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This article was supported in part by grants received by R.T.-S. from the Spanish Ministry of Economy and Competitiveness, Institute of Health Carlos III, CIBERSAM, INCLIVA, Generalitat Valenciana (PROMETEO11/2011/042), and Alicia Koplowitz Foundation. We would like to thank J. M. Valderas, A. Valencia, K. Ibáñez, J. Climent, B. Crespo-Facorro, V. Balanzá-Martínez, S. Martínez, E. Vieta, M. Gómez-Beneyto, F. Catalá-López and A. Balmain for their helpful advice on previous versions of the manuscript. We also thank B. Normanly, E. Tormo, C. Amézcua, M. Suárez and P. Suárez for their excellent editorial and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rafael Tabarés-Seisdedos or John L. Rubenstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information Table S1

Number of genes and pathways common to cancer and schizophrenia. (PDF 208 kb)

Supplementary information Table S2

List of genes involved in schizophrenia, breast cancer, prostate cancer, melanoma and all cancers, and list of cancer genes related with schizophrenia (PDF 355 kb)

Supplementary information Table S3

List of KEGG pathways (ID) involved in schizophrenia, breast cancer, prostate cancer, melanoma and all cancers, and list of KEGG cancer pathways related with schizophrenia. (PDF 201 kb)

Supplementary information Figure S4

Construction of a network showing the overlap of genes and pathways common to schizophrenia and cancer. (PDF 224 kb)

Related links

Related links

DATABASES

ClinicalTrials.gov

NCT00756717

NCT00878189

FURTHER INFORMATION

Rafael Tabarés-Seisdedos' homepage

John L. Rubenstein's homepage

Alzheimer Research Forum

GeneCodis

PhenoPedia

Glossary

Cell division plane

A mitotic cell divides into two daughter cells along the division plane. When the two daughter cells both become progenitors, the division plane is perpendicular to the neuropeithelium. When one daughter cell becomes a progenitor and the other becomes a neuron, it is parallel to the neuroepithelium.

Mammalian target of rapamycin

(mTOR). The protein kinase mTOR regulates several critical intracellular and extracellular signals. The mTOR pathway has a crucial role in cancer and is frequently activated in many cancers, mainly as a result of alterations of regulators such as phosphoinositide 3-kinase–AKT activation, phosphatase and tensin homologue (PTEN) loss or dysregulation of mTOR-negative regulators (for example, tuberous sclerosis complex 1 (TSC1) and TSC2). At present, major CNS disorders such as autism spectrum disorders are also associated with dysregulation of mTOR signalling.

Paraneoplastic neurological syndromes

(PNSs). Examples of PNSs include limbic encephalitis, encephalomyelitis and chronic gastrointestinal pseudo-obstruction and are frequent in patients with several types of cancer (and antedate its diagnosis), including ovarian teratoma, small-cell lung and breast cancer. The cause is probably an immune response against neuronal proteins expressed by the tumour (for example, antibodies against cell-surface or synaptic proteins).

Tuberous sclerosis complex

(TSC). TSC is an autosomal dominant inherited disorder that is characterized by benign tumours (hamartomas) that form during development in various organs; for example, in the brain (known as tubers). These brain lesions are associated with epilepsy, cognitive disability and autism. TSC is caused by mutations in either of the two tumour suppressor genes TSC1 (which encodes hamartin) and TSC2 (which encodes tuberin). TSC1 and TSC2 are negative regulators of mammalian target of rapamycin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabarés-Seisdedos, R., Rubenstein, J. Inverse cancer comorbidity: a serendipitous opportunity to gain insight into CNS disorders. Nat Rev Neurosci 14, 293–304 (2013). https://doi.org/10.1038/nrn3464

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3464

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer