Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Obesity and the brain: how convincing is the addiction model?

Abstract

An increasingly influential perspective conceptualizes both obesity and overeating as a food addiction accompanied by corresponding brain changes. Because there are far-reaching implications for clinical practice and social policy if it becomes widely accepted, a critical evaluation of this model is important. We examine the current evidence for the link between addiction and obesity, identifying several fundamental shortcomings in the model, as well as weaknesses and inconsistencies in the empirical support for it from human neuroscientific research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mediators of energy balance and body weight.

Similar content being viewed by others

References

  1. Swinburn, B. A. et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet 378, 804–814 (2011).

    Article  PubMed  Google Scholar 

  2. Hall, K. D. et al. Quantification of the effect of energy imbalance on bodyweight. Lancet 378, 826–837 (2011).

    Article  PubMed  Google Scholar 

  3. Gearhardt, A. N., Grilo, C. M., Dileone, R. J., Brownell, K. D. & Potenza, M. N. Can food be addictive? Public health and policy implications. Addiction 106, 1208–1212 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Devlin, M. J. Is there a place for obesity in DSM-V? Int. J. Eat. Disord. 40, S83–S88 (2007).

    Article  PubMed  Google Scholar 

  5. Volkow, N. D. & O'Brien, C. P. Issues for DSM-V: should obesity be included as a brain disorder? Am. J. Psychiatry 164, 708–710 (2007).

    Article  PubMed  Google Scholar 

  6. Ifland, J. R. et al. Refined food addiction: a classic substance use disorder. Med. Hypotheses 72, 518–526 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Cocores, J. A. & Gold, M. S. The Salted Food Addiction Hypothesis may explain overeating and the obesity epidemic. Med. Hypotheses 73, 892–899 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Volkow, N. D., Wang, G.-J. & Baler, R. D. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn. Sci. 15, 37–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Volkow, N. D. & Wise, R. A. How can drug addiction help us understand obesity? Nature Neurosci. 8, 555–560 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Kelley, A. E. & Berridge, K. C. The neuroscience of natural rewards: relevance to addictive drugs. J. Neurosci. 22, 3306–3311 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Benton, D. The plausibility of sugar addiction and its role in obesity and eating disorders. Clin. Nutr. 29, 288–303 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th edn (American Psychiatric Association, Washington, DC, 2000).

  13. Gearhardt, A. N., Corbin, W. R. & Brownell, K. D. Preliminary validation of the Yale Food Addiction Scale. Appetite 52, 430–436 (2009).

    Article  PubMed  Google Scholar 

  14. Gearhardt, A. N., Corbin, W. R. & Brownell, K. D. Food addiction: an examination of the diagnostic criteria for dependence. J. Addict. Med. 3, 1–7 (2009).

    Article  PubMed  Google Scholar 

  15. Davis, C. & Carter, J. C. Compulsive overeating as an addiction disorder. A review of theory and evidence. Appetite 53, 1–8 (2009).

    Article  PubMed  Google Scholar 

  16. Striegel-Moore, R. H. & Franko, D. L. Epidemiology of binge eating disorder. Int. J. Eat. Disord. 34, S19–S29 (2003).

    Article  PubMed  Google Scholar 

  17. O'Rahilly, S. Human genetics illuminates the paths to metabolic disease. Nature 462, 307–314 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Drewnowski, A. Obesity, diets, and social inequalities. Nutr. Rev. 67, S36–S39 (2009).

    Article  PubMed  Google Scholar 

  19. Davis, C. et al. Evidence that 'food addiction' is a valid phenotype of obesity. Appetite 57, 711–717 (2011).

    Article  PubMed  Google Scholar 

  20. Wang, G. J. et al. Enhanced striatal dopamine release during food stimulation in binge eating disorder. Obesity 19, 1601–1608 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Avena, N. M., Rada, P. & Hoebel, B. G. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci. Biobehav. Rev. 32, 20–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, G. J. et al. Brain dopamine and obesity. Lancet 357, 354–357 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Cassin, S. E. & von Ranson, K. M. Is binge eating experienced as an addiction? Appetite 49, 687–690 (2007).

    Article  PubMed  Google Scholar 

  24. Grucza, R. A. et al. The emerging link between alcoholism risk and obesity in the United States. Arch. Gen. Psychiatry 67, 1301–1308 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lilenfeld, L. R. R., Ringham, R., Kalarchian, M. A. & Marcus, M. D. A family history study of binge-eating disorder. Compr. Psychiatry 49, 247–254 (2008).

    Article  PubMed  Google Scholar 

  26. Stice, E., Spoor, S., Bohon, C. & Small, D. M. Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 322, 449–452 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Stice, E., Yokum, S., Bohon, C., Marti, N. & Smolen, A. Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. Neuroimage 50, 1618–1625 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Felsted, J. A., Ren, X., Chouinard-Decorte, F. & Small, D. M. Genetically determined differences in brain response to a primary food reward. J. Neurosci. 30, 2428–2432 (2011).

    Article  CAS  Google Scholar 

  29. Munafo, M. R., Matheson, I. J. & Flint, J. Association of the DRD2 gene Taq1A polymorphism and alcoholism: a meta-analysis of case-control studies and evidence of publication bias. Mol. Psychiatry 12, 454–461 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Noble, E. P. et al. Allelic association of the D2 dopamine receptor gene with cocaine dependence. Drug Alcohol Depend. 33, 271–285 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Zuo, Y. et al. DRD2-related TaqIA polymorphism modulates motivation to smoke. Nicotine Tob. Res. 11, 1321–1329 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Doehring, A. et al. Genetic variants altering dopamine D2 receptor expression or function modulate the risk of opiate addiction and the dosage requirements of methadone substitution. Pharmacogenet. Genomics 19, 407–414 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Davis, C. A. et al. Dopamine for “wanting” and opioids for “liking”: a comparison of obese adults with and without binge eating. Obesity 17, 1220–1225 (2009).

    CAS  PubMed  Google Scholar 

  34. Smith, L., Watson, M., Gates, S., Ball, D. & Foxcroft, D. Meta-analysis of the association of the Taq1A polymorphism with the risk of alcohol dependency: a HuGE gene-disease association review. Am. J. Epidemiol. 167, 125–138 (2008).

    Article  PubMed  Google Scholar 

  35. Munafo, M. R., Timpson, N. J., David, S. P., Ebrahim, S. & Lawlor, D. A. Association of the DRD2 gene Taq1A polymorphism and smoking behavior: a meta-analysis and new data. Nicotine Tob. Res. 11, 64–76 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fernandez-Castillo, N. et al. Association study between the DAT1, DBH and DRD2 genes and cocaine dependence in a Spanish sample. Psychiatr. Genet. 20, 317–320 (2010).

    Article  PubMed  Google Scholar 

  37. Pohjalainen, T. et al. The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol. Psychiatry 3, 256–260 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Jonsson, E. G. et al. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol. Psychiatry 4, 290–296 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Davis, C. et al. Opiates, overeating and obesity: a psychogenetic analysis. Int. J. Obes. 35, 1347–1354 (2011).

    Article  CAS  Google Scholar 

  40. Miranda, R. et al. Initial evidence of an association between OPRM1 and adolescent alcohol misuse. Alcohol. Clin. Exp. Res. 34, 112–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Ramchandani, V. A. et al. A genetic determinant of the striatal dopamine response to alcohol in men. Mol. Psychiatry 16, 809–817 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Comings, D. E. & Blum, K. Reward deficiency syndrome: genetic aspects of behavioral disorders. Prog. Brain Res. 126, 325–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Davis, C. & Fox, J. Sensitivity to reward and body mass index (BMI): evidence for a non-linear relationship. Appetite 50, 43–49 (2008).

    Article  PubMed  Google Scholar 

  44. Verdejo-Garcia, A., Lawrence, A. J. & Clark, L. Impulsivity as a vulnerability marker for substance-use disorders: review of findings from high-risk research, problem gamblers and genetic association studies. Neurosci. Biobehav. Rev. 32, 777–810 (2008).

    Article  PubMed  Google Scholar 

  45. Limosin, F. et al. Impulsiveness as the intermediate link between the dopamine receptor D2 gene and alcohol dependence. Psychiatr. Genet. 13, 127–129 (2003).

    CAS  PubMed  Google Scholar 

  46. Eisenberg, D. T. et al. Examining impulsivity as an endophenotype using a behavioral approach: a DRD2 TaqI A and DRD4 48-bp VNTR association study. Behav. Brain Funct. 3, 2 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guerrieri, R. et al. The influence of trait and induced state impulsivity on food intake in normal-weight healthy women. Appetite 49, 66–73 (2007).

    Article  PubMed  Google Scholar 

  48. Galanti, K., Gluck, M. E. & Geliebter, A. Test meal intake in obese binge eaters in relation to impulsivity and compulsivity. Int. J. Eat. Disord. 40, 727–732 (2007).

    Article  PubMed  Google Scholar 

  49. Davis, C. et al. Personality and eating behaviors: a case–control study of binge eating disorder. Int. J. Eat. Disord. 41, 243–250 (2008).

    Article  PubMed  Google Scholar 

  50. Kenny, P. J. Common cellular and molecular mechanisms in obesity and drug addiction. Nature Rev. Neurosci. 12, 638–651 (2011).

    Article  CAS  Google Scholar 

  51. Bocarsly, M. E., Berner, L. A., Hoebel, B. G. & Avena, N. M. Rats that binge eat fat-rich food do not show somatic signs or anxiety associated with opiate-like withdrawal: implications for nutrient-specific food addiction behaviors. Physiol. Behav. 104, 865–872 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Avena, N. M., Rada, P., Moise, N. & Hoebel, B. G. Sucrose sham feeding on a binge schedule releases accumbens dopamine repeatedly and eliminates the acetylcholine satiety response. Neuroscience 139, 813–820 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Avena, N. M., Rada, P. & Hoebel, B. G. Sugar and fat bingeing have notable differences in addictive-like behavior. J. Nutr. 139, 623–628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Johnson, P. M. & Kenny, P. J. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nature Neurosci. 13, 635–641 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Avena, N. M., Long, K. A. & Hoebel, B. G. Sugar-dependent rats show enhanced responding for sugar after abstinence: evidence of a sugar deprivation effect. Physiol. Behav. 84, 359–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Colantuoni, C. et al. Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obes Res. 10, 478–488 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Rada, P., Avena, N. M. & Hoebel, B. G. Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience 134, 737–744 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Colantuoni, C. et al. Excessive sugar intake alters binding to dopamine and mu-opioid receptors in the brain. Neuroreport 12, 3549–3552 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Ahmed, S. H., Kenny, P. J., Koob, G. F. & Markou, A. Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nature Neurosci. 5, 625–626 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Kenny, P. J., Chen, S. A., Kitamura, O., Markou, A. & Koob, G. F. Conditioned withdrawal drives heroin consumption and decreases reward sensitivity. J. Neurosci. 26, 5894–5900 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Geiger, B. M. et al. Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience 159, 1193–1199 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Geiger, B. M. et al. Evidence for defective mesolimbic dopamine exocytosis in obesity-prone rats. FASEB J. 22, 2740–2746 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rada, P., Bocarsly, M. E., Barson, J. R., Hoebel, B. G. & Leibowitz, S. F. Reduced accumbens dopamine in Sprague-Dawley rats prone to overeating a fat-rich diet. Physiol. Behav. 101, 394–400 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Corwin, R. L. & Grigson, P. S. Symposium overview-food addiction: fact or fiction? J. Nutr. 139, 617–619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Volkow, N. D. et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 42, 1537–1543 (2008).

    Article  PubMed  Google Scholar 

  66. Small, D. M., Jones-Gotman, M. & Dagher, A. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 19, 1709–1715 (2003).

    Article  PubMed  Google Scholar 

  67. Volkow, N. D. et al. Brain dopamine is associated with eating behaviors in humans. Int. J. Eat. Disord. 33, 136–142 (2003).

    Article  PubMed  Google Scholar 

  68. Volkow, N. D. et al. “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse 44, 175–180 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Haltia, L. T. et al. Effects of intravenous glucose on dopaminergic function in the human brain in vivo. Synapse 61, 748–756 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Steele, K. E. et al. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes. Surg. 20, 369–374 (2010).

    Article  PubMed  Google Scholar 

  71. Dunn, J. P. et al. Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings. Brain Res. 1350, 123–130 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Volkow, N. D., Wang, G. J., Fowler, J. S. & Tomasi, D. Addiction circuitry in the human brain. Annu. Rev. Pharmacol. Toxicol. 52, 321–336 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Passamonti, L. et al. Personality predicts the brain's response to viewing appetizing foods: the neural basis of a risk factor for overeating. J. Neurosci. 29, 43–51 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kullmann, S. et al. The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity. Hum. Brain Mapp. 21 Apr 2011 (doi:10.1002/hbm.21268).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Everitt, B. J. et al. Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Phil. Trans. R. Soc. B 363, 3125–3135 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dalley, J. W. et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315, 1267–1270 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Koob, G. F. & Le Moal, M. Review. Neurobiological mechanisms for opponent motivational processes in addiction. Phil. Trans. R. Soc. B 363, 3113–3123 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Robinson, T. E. & Berridge, K. C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Brain Res. Rev. 18, 247–291 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Volkow, N. D. et al. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am. J. Psychiatry 158, 2015–2021 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Deroche-Gamonet, V., Belin, D. & Piazza, P. V. Evidence for addiction-like behavior in the rat. Science 305, 1014–1017 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S. & Ersche, K. D. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn. Sci. 16, 81–91 (2012).

    Article  PubMed  Google Scholar 

  82. Vandenbroeck, P., Goossens, J. & Clemens, M. Tackling Obesities: Future Choices — Obesity System Atlas (Government Office for Science, UK, 2007).

    Google Scholar 

  83. Rothemund, Y. et al. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage 37, 410–421 (2007).

    Article  PubMed  Google Scholar 

  84. Martin, L. E. et al. Neural mechanisms associated with food motivation in obese and healthy weight adults. Obesity 18, 254–260 (2010).

    Article  PubMed  Google Scholar 

  85. Davids, S. et al. Increased dorsolateral prefrontal cortex activation in obese children during observation of food stimuli. Int. J. Obes. 34, 94–104 (2010).

    Article  CAS  Google Scholar 

  86. Bruce, A. S. et al. Obese children show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control. Int. J. Obes 34, 1494–1500 (2010).

    Article  CAS  Google Scholar 

  87. Schienle, A., Schäfer, A., Hermann, A. & Vaitl, D. Binge-eating disorder: reward sensitivity and brain activation to images of food. Biol. Psychiatry 65, 654–661 (2009).

    Article  PubMed  Google Scholar 

  88. Brooks, S. J. et al. Differential neural responses to food images in women with bulimia versus anorexia nervosa. PLoS ONE 6, e22259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stice, E., Yokum, S., Blum, K. & Bohon, C. Weight gain is associated with reduced striatal response to palatable food. J. Neurosci. 30, 13105–13109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yokum, S., Ng, J. & Stice, E. Attentional bias to food images associated with elevated weight and future weight gain: an FMRI study. Obesity 19, 1775–1783 (2011).

    Article  PubMed  Google Scholar 

  91. Killgore, W. D. S. & Yurgelun-Todd, D. A. Body mass predicts orbitofrontal activity during visual presentations of high-calorie foods. Neuroreport 16, 859–863 (2005).

    Article  PubMed  Google Scholar 

  92. Batterink, L., Yokum, S. & Stice, E. Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study. Neuroimage 52, 1696–1703 (2010).

    Article  PubMed  Google Scholar 

  93. Ng, J., Stice, E., Yokum, S. & Bohon, C. An fMRI study of obesity, food reward, and perceived caloric density. Does a low-fat label make food less appealing? Appetite 57, 65–72 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Stice, E., Spoor, S., Bohon, C., Veldhuizen, M. G. & Small, D. M. Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J. Abnorm. Psychol. 117, 924–935 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gearhardt, A. N. et al. Neural correlates of food addiction. Arch. Gen. Psychiatry 68, 808–816 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  96. DelParigi, A., Chen, K., Salbe, A. D., Reiman, E. M. & Tataranni, P. A. Sensory experience of food and obesity: a positron emission tomography study of the brain regions affected by tasting a liquid meal after a prolonged fast. Neuroimage 24, 436–443 (2005).

    Article  PubMed  Google Scholar 

  97. Le, D. S. et al. Less activation of the left dorsolateral prefrontal cortex in response to a meal: a feature of obesity. Am. J. Clin. Nutr. 84, 725–731 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Le, D. S. et al. Less activation in the left dorsolateral prefrontal cortex in the reanalysis of the response to a meal in obese than in lean women and its association with successful weight loss. Am. J. Clin. Nutr. 86, 573–579 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Frank, G. K. W., Reynolds, J. R., Shott, M. E. & O'Reilly, R. C. Altered temporal difference learning in bulimia nervosa. Biol. Psychiatry 70, 728–735 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bohon, C. & Stice, E. Reward abnormalities among women with full and subthreshold bulimia nervosa: a functional magnetic resonance imaging study. Int. J. Eat. Disord. 44, 585–595 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Karhunen, L. J. et al. Regional cerebral blood flow during exposure to food in obese binge eating women. Psychiatry Res. 99, 29–42 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank B. Everitt for his comments, particularly on Box 2. H.Z. is jointly funded by the Wellcome Trust and GlaxoSmithKline. I.S.F. and P.C.F. are supported by the Bernard Wolfe Health Neuroscience Fund. H.Z., I.S.F. and P.C.F. are also supported by the Wellcome Trust, MRC (Medical Research Council) Centre for Obesity and Related Diseases, and the UK National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre. This work was carried out at the Institute of Metabolic Science and the Wellcome–MRC-funded Behavioural and Clinical Neuroscience Institute. It was inspired by discussions with fellow members of the Behaviour and Health Research Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Fletcher.

Ethics declarations

Competing interests

H.Z. is supported by a GlaxoSmithKline–Wellcome translational medicine Ph.D. studentship. P.C.F. has recieved consultancy fees from GlaxoSmithKline.

Related links

Related links

DATABASES

Pathway Interaction Database

FURTHER INFORMATION

Behaviour and Health Research Unit

Metabolic Research Laboratories

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziauddeen, H., Farooqi, I. & Fletcher, P. Obesity and the brain: how convincing is the addiction model?. Nat Rev Neurosci 13, 279–286 (2012). https://doi.org/10.1038/nrn3212

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing