Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deep molecular diversity of mammalian synapses: why it matters and how to measure it

Key Points

  • Synapses of the mammalian CNS are highly complex structures composed of thousands of distinct proteins. Synaptic proteins are often expressed in variable patterns across different brain regions and neuronal populations, suggesting a high degree of molecular diversity in synapses.

  • Synapse types have long been discriminated on the basis of neurotransmitter molecules, but it is now necessary to recognize much deeper diversity of both synaptic protein composition and function within each traditional neurotransmitter type.

  • Intra-type synapse diversity reflects many factors, including diversity of presynaptic and postsynaptic parent neurons, activity histories and influences of third-party neurons and glial cells.

  • Intra-type functional diversity is reflected in strength, kinetics, voltage-dependence and plasticity of synaptic transmission. Improving knowledge of the relationships between molecular and functional aspects of diversity is sure to illuminate principals of synaptic circuit function.

  • Proteins identifiable at mature synapses include adhesion molecules that guide selective synaptogenesis during development. Such molecules may encode circuit context and connectivity in the mature brain and aid circuit reconstruction efforts.

  • Many mental and neurological disorders reflect mutations in synaptic proteins expressed in subsets of synapses. A better grasp of synapse molecular diversity is certain to contribute to our understanding of specific brain disorders.

  • New techniques that probe the combinatorial expression of proteins at the level of individual synapses within the brain are bolstering our efforts to link intra-type diversity to distinct physiological and structural properties of synaptic connections and brain circuits.

Abstract

Pioneering studies in the middle of the twentieth century revealed substantial diversity among mammalian chemical synapses and led to a widely accepted classification of synapse type on the basis of neurotransmitter molecule identity. Subsequently, powerful new physiological, genetic and structural methods have enabled the discovery of much deeper functional and molecular diversity within each traditional neurotransmitter type. Today, this deep diversity continues to pose both daunting challenges and exciting new opportunities for neuroscience. Our growing understanding of deep synapse diversity may transform how we think about and study neural circuit development, structure and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evidence for distinct patterns of synaptic protein expression.
Figure 2: Synaptic molecules and physiological diversity.
Figure 3: Synaptic proteins as a connectivity code.
Figure 4: Methods for probing the ultrastructure and molecular composition of single synapses.
Figure 5: Multidimensional views of single synapses.
Figure 6: A mechanistic classification of synapses on the basis of protein biosynthesis principles.

Similar content being viewed by others

References

  1. Ramón y Cajal, S. The structure and connexions of neurons. Nobelprize.org [online], (1906).

  2. Emes, R. D. et al. Evolutionary expansion and anatomical specialization of synapse proteome complexity. Nature Neurosci. 11, 799–806 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006). A comprehensive study of the protein and lipid composition of synaptic vesicles that culminates in the construction of a detailed structural model of the molecular architecture of these organelles and highlights their molecular complexity.

    Article  CAS  PubMed  Google Scholar 

  4. McPherson, P. S. Proteomic analysis of clathrin-coated vesicles. Proteomics 10, 4025–4039 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Collins, M. O. et al. Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J. Neurochem. 97 (Suppl. 1), 16–23 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Dosemeci, A. et al. Composition of the synaptic PSD-95 complex. Mol. Cell Proteomics 6, 1749–1760 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Peng, J. et al. Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J. Biol. Chem. 279, 21003–21011 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Schrimpf, S. P. et al. Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics 5, 2531–2541 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Filiou, M. D. et al. Profiling of mouse synaptosome proteome and phosphoproteome by IEF. Electrophoresis 31, 1294–1301 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Cheng, D. et al. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol. Cell. Proteomics 5, 1158–1170 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Grønborg, M. et al. Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J. Neurosci. 30, 2–12 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Selimi, F., Cristea, I. M., Heller, E., Chait, B. T. & Heintz, N. Proteomic studies of a single CNS synapse type: the parallel fiber/purkinje cell synapse. PLoS Biol. 7, e83 (2009). This study exploited the specific expression of GluRA2 at parallel fibre–Purkinje cell synapses to purify this synapse population for proteomic analysis, which identified dozens of additional proteins highly enriched within this specific anatomical connection.

    Article  CAS  PubMed  Google Scholar 

  13. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007). An extensive study using high-throughput in situ hybridization and image analysis to map the expression of over 20,000 genes across the entire mouse brain.

    Article  CAS  PubMed  Google Scholar 

  15. Fremeau, R. T. Jr et al. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31, 247–260 (2001). A study providing the first evidence that glutamatergic synapses can be divided into two synapse subtypes on the basis of their expression of the vesicular glutamate transporters VGluT1 and VGluT2.

    Article  CAS  PubMed  Google Scholar 

  16. Ferraguti, F. & Shigemoto, R. Metabotropic glutamate receptors. Cell Tissue Res. 326, 483–504 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Shigemoto, R. et al. Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone. Nature 381, 523–525 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Miyata, M. Distinct properties of corticothalamic and primary sensory synapses to thalamic neurons. Neurosci. Res. 59, 377–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Fioravante, D. & Regehr, W. G. Short-term forms of presynaptic plasticity. Curr. Opin. Neurobiol. 21, 269–274 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature Neurosci. 9, 534–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Groh, A. et al. Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. Cereb. Cortex 20 826–836 2009).

    Article  PubMed  Google Scholar 

  22. Blatow, M., Caputi, A., Burnashev, N., Monyer, H. & Rozov, A. Ca2+ buffer saturation underlies paired pulse facilitation in calbindin-D28k-containing terminals. Neuron 38, 79–88 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Burnashev, N. & Rozov, A. Presynaptic Ca2+ dynamics, Ca2+ buffers and synaptic efficacy. Cell Calcium 37, 489–495 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Caillard, O. et al. Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc. Natl Acad. Sci USA 97, 13372–13377 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nature Neurosci. 1, 279–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. De Gois, S. et al. Identification of endophilins 1 and 3 as selective binding partners for VGLUT1 and their co-localization in neocortical glutamatergic synapses: implications for vesicular glutamate transporter trafficking and excitatory vesicle formation. Cell. Mol. Neurobiol. 26, 679–693 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Voglmaier, S. M. et al. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51, 71–84 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Mutch, S. A. et al. Protein quantification at the single vesicle level reveals that a subset of synaptic vesicle proteins are trafficked with high precision. J. Neurosci. 31, 1461–1470 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bragina, L., Giovedi, S., Barbaresi, P., Benfenati, F. & Conti, F. Heterogeneity of glutamatergic and GABAergic release machinery in cerebral cortex: analysis of synaptogyrin, vesicle-associated membrane protein, and syntaxin. Neuroscience 165, 934–943 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Bragina, L. et al. Heterogeneity of glutamatergic and GABAergic release machinery in cerebral cortex. Neuroscience 146, 1829–1840 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Isaac, J. T. R., Ashby, M. C. & McBain, C. J. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 54, 859–871 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Lu, W. et al. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 62, 254–268 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Savtchouk, I. & Liu, S. J. Remodeling of synaptic AMPA receptor subtype alters the probability and pattern of action potential firing. J. Neurosci. 31, 501–511 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cull-Candy, S. G. & Leszkiewicz, D. N. Role of distinct NMDA receptor subtypes at central synapses. Sci. STKE, re16 (2004).

  35. Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B. & Seeburg, P. H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–540 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Brickley, S. G., Misra, C., Mok, M. H. S., Mishina, M. & Cull-Candy, S. G. NR2B and NR2D subunits coassemble in cerebellar Golgi cells to form a distinct NMDA receptor subtype restricted to extrasynaptic sites. J. Neurosci. 23, 4958–4966 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Granger, A. J., Gray, J. A., Lu, W. & Nicoll, R. A. Genetic analysis of neuronal ionotropic glutamate receptor subunits. J. Physiol. 589, 4095–4101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luscher, B., Fuchs, T. & Kilpatrick, C. L. GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 70, 385–409 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sassoè-Pognetto, M. Understanding the molecular diversity of GABAergic synapses. Front. Cell. Neurosci. 5, 4 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Klausberger, T., Roberts, J. D. B. & Somogyi, P. Cell type- and input-specific differences in the number and subtypes of synaptic GABAA receptors in the hippocampus. J. Neurosci. 22, 2513–2521 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Freund, T. F. & Katona, I. Perisomatic inhibition. Neuron 56, 33–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Rudolph, U., Crestani, F. & Möhler, H. GABAA receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol. Sci. 22, 188–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Hull, C., Isaacson, J. S. & Scanziani, M. Postsynaptic mechanisms govern the differential excitation of cortical neurons by thalamic inputs. J. Neurosci. 29, 9127–9136 (2009). This study demonstrated that thalamic afferents produce distinct effects on different cortical target neurons as a result of differences in receptor isoform expression. This report is one of the rare instances where distinct physiological properties have been convincingly linked to a clear molecular difference between synapse populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Burnashev, N., Monyer, H., Seeburg, P. H. & Sakmann, B. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8, 189–198 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Jonas, P. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12, 1281–1289 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Hestrin, S. Different glutamate receptor channels mediate fast excitatory synaptic currents in inhibitory and excitatory cortical neurons. Neuron 11, 1083–1091 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Vicini, S. et al. Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. J. Neurophysiol. 79, 555–566 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Kumar, S. S. & Huguenard, J. R. Pathway-specific differences in subunit composition of synaptic NMDA receptors on pyramidal neurons in neocortex. J. Neurosci. 23, 10074–10083 (2003). This study used careful physiological stimulation of long-distance callosal and local intracortical axons along with extensive pharmacological manipulation to demonstrate that synapses of the same postsynaptic pyramidal neurons express different NMDAR subunit combinations depending on their presynaptic source, and went further to demonstrate important functional ramifications of this pathway-specific difference in receptor subtype expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nyíri, G., Freund, T. F. & Somogyi, P. Input-dependent synaptic targeting of α2-subunit-containing GABAA receptors in synapses of hippocampal pyramidal cells of the rat. Eur. J. Neurosci. 13, 428–442 (2001).

    Article  PubMed  Google Scholar 

  50. Kato, A. S., Gill, M. B., Yu, H., Nisenbaum, E. S. & Bredt, D. S. TARPs differentially decorate AMPA receptors to specify neuropharmacology. Trends Neurosci. 33, 241–248 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Béïque, J.-C. et al. Synapse-specific regulation of AMPA receptor function by PSD-95. Proc. Natl Acad. Sci. USA 103, 19535–19540 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Elias, G. M. & Nicoll, R. A. Synaptic trafficking of glutamate receptors by MAGUK scaffolding proteins. Trends Cell Biol. 17, 343–352 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Costa-Mattioli, M., Sossin, W. S., Klann, E. & Sonenberg, N. Translational control of long-lasting synaptic plasticity and memory. Neuron 61, 10–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ho, V. M., Lee, J. & Martin, K. C. The cell biology of synaptic plasticity. Science 334, 623–628 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Valles, A. et al. Genomewide analysis of rat barrel cortex reveals time- and layer-specific mRNA expression changes related to experience-dependent plasticity. J. Neurosci. 31, 6140–6158 (2011). This genomic study used a combination of microarrays and in situ hybridization to reveal the time course and laminar patterns of gene expression changes in rodent whisker somatosensory cortex following environmental enrichment. This provided a powerful overview of the genetic and molecular basis for experience-dependent learning and memory.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shepherd, J. D. & Bear, M. F. New views of Arc, a master regulator of synaptic plasticity. Nature Neurosci. 14, 279–284 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Bliss, T. & Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate gyrus of the rat following selective depletion of monoamines. J. Physiol. 232, 331–356 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dudek, S. M. & Bear, M. F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl Acad. Sci. USA 89, 4363–4367 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Busetto, G., Higley, M. J. & Sabatini, B. L. Developmental presence and disappearance of postsynaptically silent synapses on dendritic spines of rat layer 2/3 pyramidal neurons. J. Physiol. 586, 1519–1527 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ashby, M. C. & Isaac, J. T. R. Maturation of a recurrent excitatory neocortical circuit by experience-dependent unsilencing of newly formed dendritic spines. Neuron 70, 510–521 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Emond, M. R. et al. AMPA receptor subunits define properties of state-dependent synaptic plasticity. J. Physiol. 588, 1929–1946 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kelly, L., Farrant, M. & Cull-Candy, S. G. Synaptic mGluR activation drives plasticity of calcium-permeable AMPA receptors. Nature Neurosci. 12, 593–601 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Miyashita, T., Kubik, S., Lewandowski, G. & Guzowski, J. F. Networks of neurons, networks of genes: an integrated view of memory consolidation. Neurobiol. Learn. Mem. 89, 269–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Rial Verde, E. M., Lee-Osbourne, J., Worley, P. F., Malinow, R. & Cline, H. T. Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52, 461–474 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Béïque, J.-C., Na, Y., Kuhl, D., Worley, P. F. & Huganir, R. L. Arc-dependent synapse-specific homeostatic plasticity. Proc. Natl Acad. Sci. USA 108, 816–821 (2011).

    Article  PubMed  Google Scholar 

  67. Shi, S., Hayashi, Y., Esteban, J. A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Li, P., Rudolph, U. & Huntsman, M. M. Long-term sensory deprivation selectively rearranges functional inhibitory circuits in mouse barrel cortex. Proc. Natl Acad. Sci. USA 106, 12156–12161 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Feldman, D. E. Synaptic mechanisms for plasticity in neocortex. Annu. Rev. Neurosci. 32, 33–55 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sjöstrom, P. J., Rancz, E. A., Roth, A. & Häusser, M. Dendritic excitability and synaptic plasticity. Physiol. Rev. 88, 769–840 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Maffei, A. The many forms and functions of long term plasticity at GABAergic synapses. Neural Plast. 2011, 254724 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Egger, V., Feldmeyer, D. & Sakmann, B. Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nature Neurosci. 2, 1098–1105 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Lüscher, C. & Huber, K. M. Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron 65, 445–459 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chevaleyre, V., Takahashi, K.A. & Castillo, P. E. Endocannabinoid-mediated synaptic plasticity in the CNS. Annu. Rev. Neurosci. 29, 37–76 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Renger, J. J. et al. Experience-dependent plasticity without long-term depression by type 2 metabotropic glutamate receptors in developing visual cortex. Proc. Natl Acad. Sci. USA 99, 1041–1046 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Crozier, R.A., Wang, Y., Liu, C.-H. & Bear, M. F. Deprivation-induced synaptic depression by distinct mechanisms in different layers of mouse visual cortex. Proc. Natl Acad. Sci. USA 104, 1383–1388 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu, C.-H., Heynen, A. J., Shuler, M. G. H. & Bear, M. F. Cannabinoid receptor blockade reveals parallel plasticity mechanisms in different layers of mouse visual cortex. Neuron 58, 340–345 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Coba, M. P. et al. Neurotransmitters drive combinatorial multistate postsynaptic density networks. Sci. Signal. 2, ra19 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Williams, M. E., de Wit, J. & Ghosh, A. Molecular mechanisms of synaptic specificity in developing neural circuits. Neuron 68, 9–18 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zipursky, S. L. & Sanes, J. R. Chemoaffinity revisited: dscams, protocadherins, and neural circuit assembly. Cell 143, 343–353 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Dalva, M. B., McClelland, A. C. & Kayser, M. S. Cell adhesion molecules: signalling functions at the synapse. Nature Rev. Neurosci. 8, 206–220 (2007).

    Article  CAS  Google Scholar 

  82. Biederer, T. & Stagi, M. Signaling by synaptogenic molecules. Curr. Opin. Neurobiol. 18, 261–269 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sudhof, T. C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455, 903–911 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Takeichi, M. The cadherin superfamily in neuronal connections and interactions. Nature Rev. Neurosci. 8, 11–20 (2007).

    Article  CAS  Google Scholar 

  85. Arikkath, J. & Reichardt, L. F. Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity. Trends Neurosci. 31, 487–494 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ango, F. et al. Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at Purkinje axon initial segment. Cell 119, 257–272 (2004). A study in which knockout mice and RNA interference were used to demonstrate the role of the adhesion protein neurofascin 186 and the scaffold protein ankyrin G in the formation of a specific synapse that is formed between basket cells and Purkinje cells and is localized to a specific region of the Purkinje cell, the AIS.

    Article  CAS  PubMed  Google Scholar 

  87. Zonta, B. et al. A critical role for Neurofascin in regulating action potential initiation through maintenance of the axon initial segment. Neuron 69, 945–956 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Anderson, J. R. et al. Exploring the retinal connectome. Mol. Vis. 17, 355–379 (2011). This is the first practical connectome data set from a mammalian retina. The data set spans the inner nuclear, inner plexiform and ganglion cell layers and contains six molecular markers, including an in vivo activity marker. Initial exploration of this set confirmed well-known connections and revealed new features of retinal organization, including much higher diversity of synaptic connections.

    PubMed  PubMed Central  Google Scholar 

  89. Anderson, J. R. et al. A computational framework for ultrastructural mapping of neural circuitry. PLoS Biol. 7, e1000074 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Helmstaedter, M., Briggman, K. L. & Denk, W. High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nature Neurosci. 14, 1081–1088 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Bock, D. D. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mishchenko, Y. et al. Ultrastructural analysis of hippocampal neuropil from the connectomics perspective. Neuron 67, 1009–1020 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Briggman, K. L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Kleinfeld, D. et al. Large-scale automated histology in the pursuit of connectomes. J. Neurosci. 31, 16125–16138 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ushkaryov, Y. A. & Sudhof, T. C. Neurexin III α: extensive alternative splicing generates membrane-bound and soluble forms. Proc. Natl Acad. Sci. USA 90, 6410–6414 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ushkaryov, Y. A., Petrenko, A. G., Geppert, M. & Sudhof, T. C. Neurexins: synaptic cell surface proteins related to the α-latrotoxin receptor and laminin. Science 257, 50–56 (1992).

    Article  CAS  PubMed  Google Scholar 

  97. Ullrich, B., Ushkaryov, Y. A. & Sudhof, T. C. Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron 14, 497–507 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Song, J. Y., Ichtchenko, K., Sudhof, T. C. & Brose, N. Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc. Natl Acad. Sci. USA 96, 1100–1105 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Varoqueaux, F., Jamain, S. & Brose, N. Neuroligin 2 is exclusively localized to inhibitory synapses. Eur. J. Cell Biol. 83, 449–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Hoon, M. et al. Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proc. Natl Acad. Sci. USA 108, 3053–3058 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Budreck, E. C. & Scheiffele, P. Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur. J. Neurosci. 26, 1738–1748 (2007).

    Article  PubMed  Google Scholar 

  102. Kohmura, N. et al. Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron 20, 1137–1151 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Wu, Q. & Maniatis, T. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97, 779–790 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Zou, C., Huang, W., Ying, G. & Wu, Q. Sequence analysis and expression mapping of the rat clustered protocadherin gene repertoires. Neuroscience 144, 579–603 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Junghans, D. et al. Postsynaptic and differential localization to neuronal subtypes of protocadherin β16 in the mammalian central nervous system. Eur. J. Neurosci. 27, 559–571 (2008).

    Article  PubMed  Google Scholar 

  106. Ascoli, G. A. et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Rev. Neurosci. 9, 557–568 (2008).

    Article  CAS  Google Scholar 

  107. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nature Rev. Neurosci. 5, 793–807 (2004).

    Article  CAS  Google Scholar 

  108. Miyazaki, T., Fukaya, M., Shimizu, H. & Watanabe, M. Subtype switching of vesicular glutamate transporters at parallel fibre-Purkinje cell synapses in developing mouse cerebellum. Eur. J. Neurosci. 17, 2563–2572 (2003).

    Article  PubMed  Google Scholar 

  109. Bayes, A. et al. Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nature Neurosci. 14, 19–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Jamain, S., Betancur, C., Giros, B., Leboyer, M. & Bourgeron, T. [Genetics of autism: from genome scans to candidate genes]. Med. Sci. (Paris) 19, 1081–1090 (2003) (in French).

    Article  Google Scholar 

  111. Walsh, C. A., Morrow, E. M. & Rubenstein, J. L. Autism and brain development. Cell 135, 396–400 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466, 368–372 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tabuchi, K. et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318, 71–76 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Etherton, M. et al. Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc. Natl Acad. Sci. USA 108, 13764–13769 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jamain, S. et al. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc. Natl Acad. Sci. USA 105, 1710–1715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Peca, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. St. Clair, D. et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 336, 13–16 (1990).

    Article  CAS  PubMed  Google Scholar 

  118. Millar, J. K. et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum. Mol. Genet. 9, 1415–1423 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Brandon, N. J. et al. Understanding the role of DISC1 in psychiatric disease and during normal development. J. Neurosci. 29, 12768–12775 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kirkpatrick, B. et al. DISC1 immunoreactivity at the light and ultrastructural level in the human neocortex. J. Comp. Neurol. 497, 436–450 (2006).

    Article  PubMed  Google Scholar 

  121. Glantz, L. A. & Lewis, D. A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry 57, 65–73 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Kvajo, M. et al. A mutation in mouse Disc1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc. Natl Acad. Sci. USA 105, 7076–7081 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hayashi-Takagi, A. et al. Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nature Neurosci. 13, 327–332 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Schurov, I. L., Handford, E. J., Brandon, N. J. & Whiting, P. J. Expression of disrupted in schizophrenia 1 (DISC1) protein in the adult and developing mouse brain indicates its role in neurodevelopment. Mol. Psychiatry 9, 1100–1110 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Palade, G. E. Electron microscope observations of internneuronal and neuromuscular synapses. Anat. Rec. 118, 335–336 (1954).

    Google Scholar 

  126. Chen, X. et al. Organization of the core structure of the postsynaptic density. Proc. Natl Acad. Sci. USA 105, 4453–4458 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jones, B. W. et al. Retinal remodeling in the Tg P347L rabbit, a large-eye model of retinal degeneration. J. Comp. Neurol. 519, 2713–2733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Micheva, K. D. & Smith, S. J. Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25–36 (2007). Using high-throughput array tomography, individual cortical synapses in situ were characterized by the presence of 18 molecular markers. An antibody panel was developed to reliably distinguish between glutamatergic and GABAergic synapses and to begin exploring intra-type diversity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Micheva, K. D., Busse, B., Weiler, N. C., O'Rourke, N. & Smith, S. J. Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68, 639–653 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3, 793–795 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    CAS  PubMed  Google Scholar 

  133. Hess, S. T., Girirajan, T. P. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. Superresolution imaging of chemical synapses in the brain. Neuron 68, 843–856 (2010). The distributions of ten pre- and postsynaptic proteins at brain synapses were measured with nanometre precision using three-colour three-dimensional STORM imaging. Variations in neurotransmitter receptor composition and localization were observed among synapses and across different brain regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Buckers, J., Wildanger, D., Vicidomini, G., Kastrup, L. & Hell, S. W. Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt. Express 19, 3130–3143 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Bates, M., Huang, B., Dempsey, G. T. & Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749–1753 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nature Neurosci. 9, 99–107 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Lichtman, J. W. & Denk, W. The big and the small: challenges of imaging the brain's circuits. Science 334, 618–623 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Jain, V., Seung, H. S. & Turaga, S. C. Machines that learn to segment images: a crucial technology for connectomics. Curr. Opin. Neurobiol. 20, 653–666 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ramón y Cajal, S. ¿Neuronismo o reticularismo? Las pruebas objetivas de la unidad anatómica de las células nerviosas. Archivos de Neurobiología 13 1–144 (1933) (in Spanish).

    Google Scholar 

  141. Micheva, K. D. & Beaulieu, C. An anatomical substrate for experience-dependent plasticity of the rat barrel field cortex. Proc. Natl Acad. Sci. USA 92, 11834–11838 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Stewart, W. W. Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14, 741–759 (1978).

    Article  CAS  PubMed  Google Scholar 

  143. Grutzendler, J., Kasthuri, N. & Gan, W. B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Xu, T. et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462, 915–919 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yang, G., Pan, F. & Gan, W. B. Stably maintained dendritic spines are associated with lifelong memories. Nature 462, 920–924 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neurosci. 4, 1086–1092 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to F. Collman for many helpful discussions. The work was supported by the Gatsby Charitable Trust (London, UK), The Howard Hughes Medical Institute (Maryland, USA) (Collaborative Innovation Award #43667), the Mathers Foundation (New York, USA) and grants from the National Institute of Neurological Diseases and Stroke (Maryland, USA) (1R21NS063210, 1R01NS075252 and 1R01NS077601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Smith.

Ethics declarations

Competing interests

Stanford has licensed a Smith and Micheva array tomography patent to Aratome, LLC, Menlo Park, California, USA. Both Smith and Micheva have founder's equity shares in Aratome. Nancy A. O'Rourke and Nicholas C. Weiler declare no competing interests.

Related links

Related links

FURTHER INFORMATION

Stephen J. Smith's homepage

Glossary

Proteomic

Relating to the study of the proteome, which is the entire set of proteins expressed by an organism, tissue, cell or subcellular organelle. A variety of large-scale techniques are used, such as mass spectrometry, immunolabelling or tagging of proteins and yeast two-hybrid screens.

Synaptosomes

Artificially formed membranous structures that are generated by the subcellular fractionation of brain tissue homogenates. The synaptosome contains most of the presynaptic terminal, including synaptic vesicles and mitochondria, as well as the postsynaptic density and adjacent postsynaptic membrane.

Isoforms

Alternative forms of the same protein generated from either related genes or from alternate splicing of the same gene.

Short-term facilitation

Increase in the amplitude of synaptic transmission over multiple stimuli on the scale of milliseconds, thought to result from frequency-dependent build-up of presynaptic calcium, which increases the release probability for upcoming spikes.

Short-term depression

Decrease in the amplitude of synaptic transmission with repeated stimulation on the scale of milliseconds, thought to result from frequency-dependent depletion of fusion-ready vesicles, which decreases the release probability for upcoming spikes.

Release probability

The probability that a single presynaptic spike will result in the release of a vesicle of neurotransmitter into the synaptic cleft. Release probability is determined by multiple presynaptic factors.

Long-term potentiation

(LTP). Long-lasting increase in synaptic strength between neurons, usually resulting from synchronous or temporally coordinated pre- and postsynaptic activity.

Long-term depression

(LTD). Long-lasting weakening of synaptic strength between neurons, often resulting from asynchronous pre- and postsynaptic activity.

Pinceau synapses

Synapses shaped like a paintbrush ('pinceau' in French) that are formed at the base of the Purkinje cell axon by cerebellar basket cells.

Autism spectrum disorders

(ASDs). A group of complex neurodevelopmental disorders characterized by difficulties in social interaction, poor verbal and non-verbal communication and abnormal repetitive behaviours.

Golgi stain

A technique based on precipitations of metallic salts within cells and used for visualization of sparse subsets of neurons and glial cells in their entirety.

EM tomography

A method for the three-dimensional reconstruction of objects from a series of projection images that are recorded with a transmission electron microscope. It offers the opportunity to obtain spatial information on structural arrangements of cellular components.

Ultrathin sections

Histological sections of resin-embedded or frozen tissue with a thickness of 30–200nm. Such sections are typically used for electron microscopy.

Confocal microscopy

A fluorescence imaging technique that increases resolution through 'optical sectioning'. To attain optical sectioning, excitation light is scanned across an object, illuminating a single point at a time, and the emitted fluorescence light is detected through a pinhole aperture, limiting the light originating from outside the focal plane.

Two-photon microscopy

A form of microscopy in which a fluorochrome that would normally be excited by a single photon is stimulated quasi-simultaneously by two photons of lower energy. Under these conditions, fluorescence increases as a function of the square of the light intensity, and decreases as the fourth power of the distance from the focus. Because of this behaviour, only fluorochrome molecules near the plane of focus are excited, greatly reducing light scattering and photodamage of the sample.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Rourke, N., Weiler, N., Micheva, K. et al. Deep molecular diversity of mammalian synapses: why it matters and how to measure it. Nat Rev Neurosci 13, 365–379 (2012). https://doi.org/10.1038/nrn3170

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3170

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing